

3. PA Sitzung 13.02.202

Alterung von Aktivkohlen in Sicherheitsfiltern und bei der Lagerung

IGF-Projekt FV-Nr. 21966 N, Laufzeit 01.08.2021 – 31.12.2024

IUTA - U. Sager, E. Däuber, U. Schneiderwind, B. Schunke, C. Asbach

TVT - C. Bläker, L. Gehrke, C. Pasel, D. Bathen

IUTA - Institut für Umwelt & Energie, Technik & Analytik e.V.

14:00 Uhr	Begrüßung der Teilnehmer & Hinweise zur Compliance-Richtlinie und Kartellrecht
14:15 Uhr	Überblick über das Projekt & Vorstellung der Projektergebnisse
15:30 Uhr	Diskussion der Ergebnisse
16:00 Uhr	Laborbesichtigung

Forschungsvorhaben

Ausgangslage / Motivation

- Anfragen der Industrie zur Restlebensdauer von Aktivkohle zur Gasreinigung
- Uneinheitliche eigene Erfahrungen zur Kapazitätsminderung durch Lagerung

Umsetzung

Lagerung der Aktivkohle

Reaktionen von Molekülen aus der Gasphase mit der inneren Oberfläche

Kapazitätsminderung + Veränderung der Oberfläche

Projektziele

- Ermittlung der dominierenden Lagerungsfaktoren auf die Alterung
- Bestimmung der Änderung der Struktur- und Oberflächeneigenschaften
- Quantifizierung der Kapazitätsminderung

Forschungsvorhaben

Arbeitspaket 1:

Auswahl geeigneter Aktivkohlen und Konditionierung

Arbeitspaket 4:

Ermittlung der Sorptionskapazitäten

Arbeitspaket 2:

Gezielte Alterung durch Lagerung bei spezifischen Bedingungen

Arbeitspaket 5:

Ermittlung physikalischer Zusammenhänge der lagerungsbedingten Alterung von Aktivkohlen

Arbeitspaket 3:

Charakterisierung der "frischen" und gelagerten Aktivkohle

Startwerte

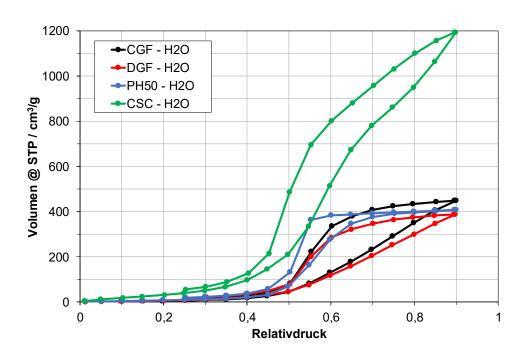
8 W 48 W 16 W 72 W 24 W 96 W

Berichtswesen:

Zwischenbericht

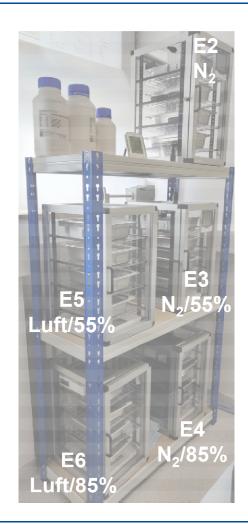
Abschlussberichte

Projektbegleitende Ausschüsse

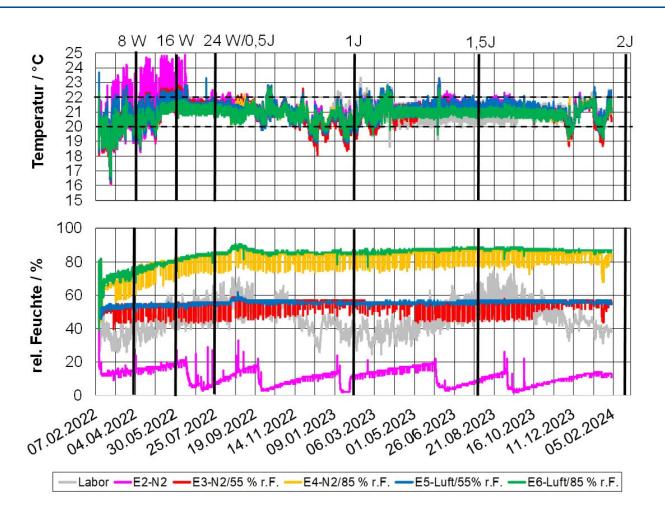


Name	Ausgangsmaterial	Aktivierung
CGF	Steinkohle	Wasserdampf
DGF	Steinkohle	Wasserdampf
PH50	Kokoskohle	Wasserdampf
CSC	Holzkohle	Phosphorsäure

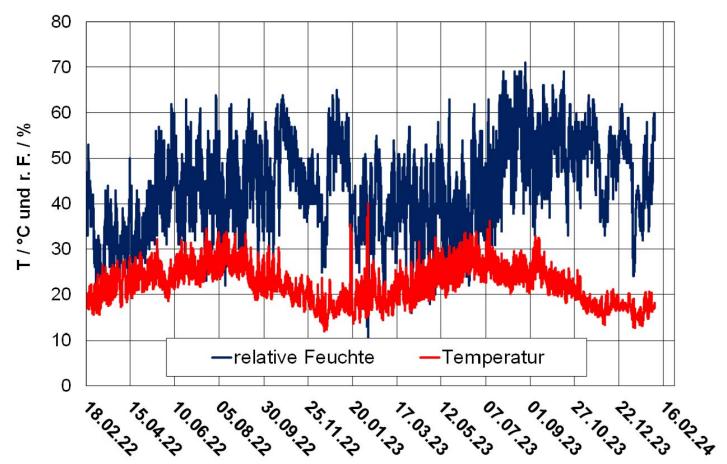
Lagerungsbedingungen


Lagerungs- bedingung	Druck	Atmosphäre	Feuchtigkeit	Temperatur
1	Vakuum	(Luft)	-	Labor
2	Umgebungsdruck	N_2	0 %	ca. 20 °C
3	Umgebungsdruck	N_2	55 %	ca. 20 °C
4	Umgebungsdruck	N_2	85 %	ca. 20 °C
5	Umgebungsdruck	Luft	55 %	ca. 20 °C
6	Umgebungsdruck	Luft	85 %	ca. 20 °C
7	Umgeb	ungsbedingun	gen von Halle 5/	UTA

Lagerungsbedingungen



Temperatur und Feuchte in Exsikkatoren 2-6 - Gesamtzeitraum



Temperatur und Feuchte bei Hallenlagerung

Zeitraum 18.02.2022 - 05.02.2024

Messplanung

Charakterisierung der "frischen" und gelagerten Aktivkohlen:

- 1. N₂ Isothermen (77K)
 - Charakterisierung struktureller Eigenschaften
- 2. Aceton Isothermen (298K)
 - Screening Methode zur qualitativen Charakterisierung der Oberflächenchemie

Bei Veränderung der N₂ und/oder Aceton Isothermen

> Detaillierte, quantitative Untersuchung der Oberflächenchemie

3. Boehm-Titration

- Quantitative Analyse der sauren oxidischen Oberflächengruppen
- 4. Exzess-Isothermen mit binärer Mischung aus Toluol und Aceton
 - Bestimmung des Verhältnisses von aromatischen zu polaren Bindungsstellen
 - Rückschlüsse auf chemische Beschaffenheit der Oberfläche

Arbeitspaket 3:

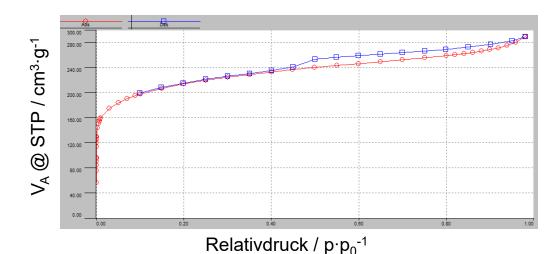
Charakterisierung der "frischen" und gelagerten Aktivkohle

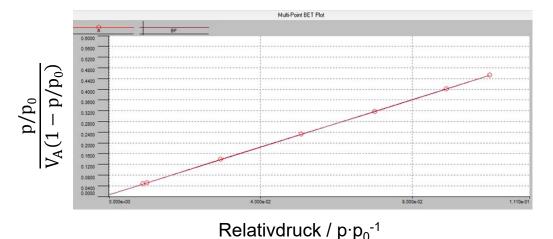
Startwerte

8 W 48 W

16 W 72 W

24 W 96 W




Ergebnisse Strukturelle Eigenschaften

N₂-Isothermen – BET Oberfläche

BET - Isotherme

$$V_A = \frac{V_m \cdot c \cdot \frac{p}{p_0}}{\left(1 - \frac{p}{p_0}\right) \cdot \left(1 + (c - 1)\frac{p}{p_0}\right)}$$

Linearisierung

$$\frac{\frac{p}{p_0}}{V_A\left(1-\frac{p}{p_0}\right)} = \boxed{\frac{1}{V_m \cdot c}} + \boxed{\frac{c-1}{V_m \cdot c}} \cdot \frac{p}{p_0}$$

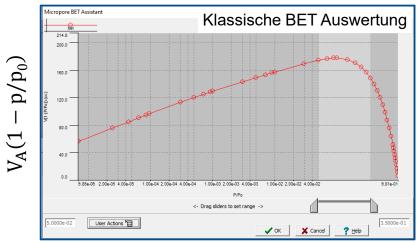
BET - Oberfläche

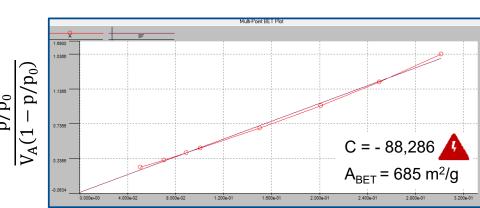
$$A_{BET} = \frac{V_m}{22414} \cdot N_A \cdot \sigma$$

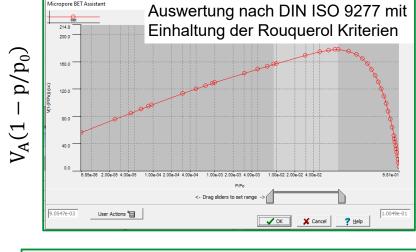
 $V_m = Monoschichtbeladung$

$$c = BET Konstante = \exp\left(\frac{E_{Ads} - E_{V}}{RT}\right)$$

 N_A = Avogadro Konstante


 $\sigma = Spezifischer Flächenbedarf eines Moleküls$


$$= 0,162 nm^2$$
 pro N_2 — Molekül

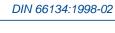


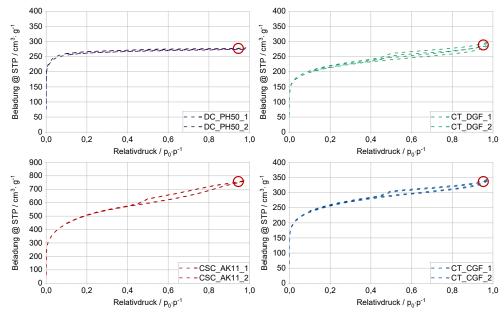
N₂-Isothermen – BET Oberfläche

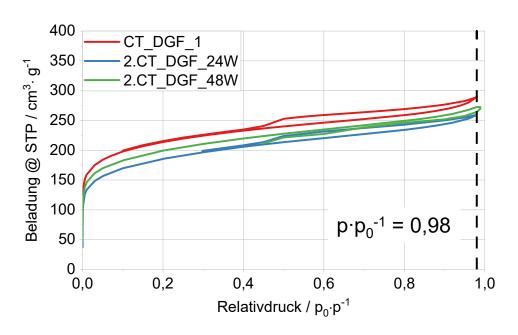
Relativdruck / p·p₀-1

Relativdruck / p·p₀⁻¹

N₂-Isothermen – Porenvolumen

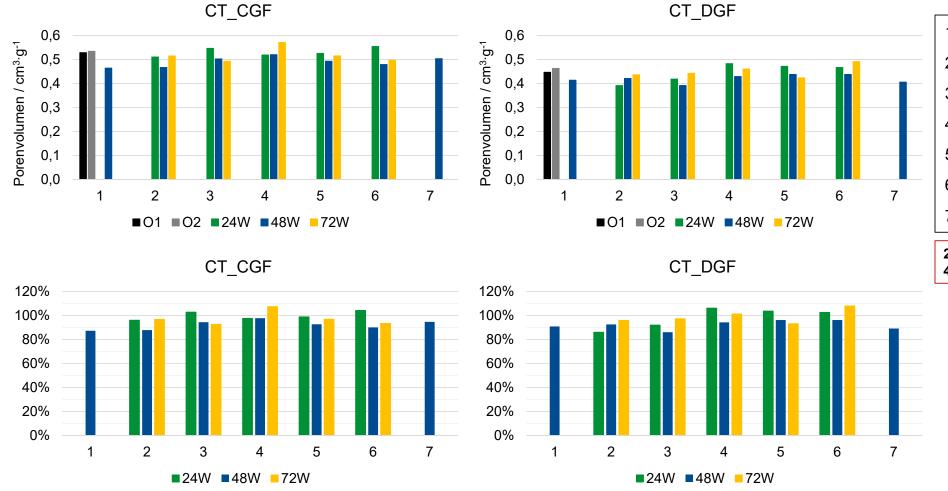



Berechnung des Porenvolumens mithilfe der Gurvichregel nahe der Sättigungsbeladung bei p \cdot p₀-1 = 0,98

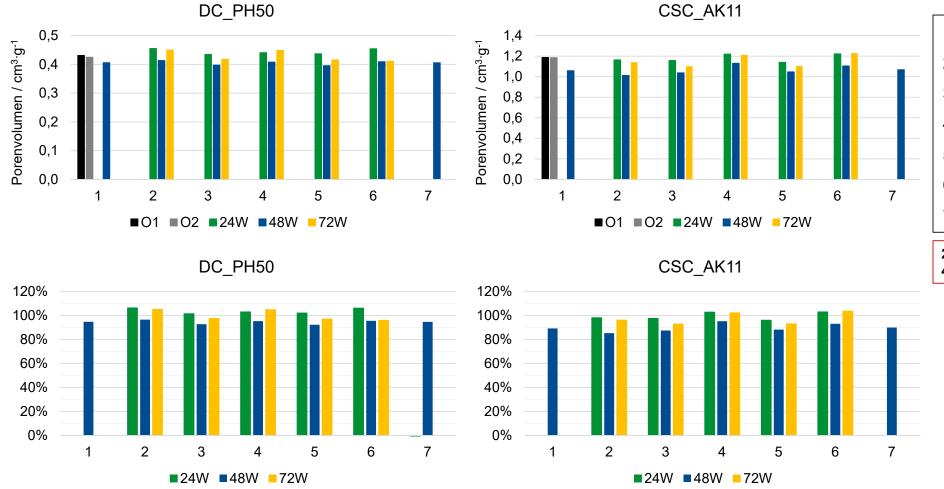

- Isothermen bilden ein Ladungsplateau aus
- Alle Poren sind komplett mit Adsorptiv gefüllt
- Adsorptiv ist im flüssigkeitsähnlichen Zustand

$$V_P = \frac{V_A}{V_n} \cdot \frac{M}{\rho_L}$$

 V_n : Molares Volumen = (22.414 10⁻³ m³(STP) mol⁻¹)



Strukturelle Eigenschaften – Porenvolumen


- 1. Vakuum
- 2. 0 % r.F., N₂
- 3. 55 % r.F., N₂
- 4. 85 % r.F., N₂
- 5. 55 % r.F., Luft
- 6. 85 % r.F., Luft
- 7. Lagerhalle

24 W, 72W: LB2-6 **48 W**: LB1-7

Strukturelle Eigenschaften – Porenvolumen

- 1. Vakuum
- 2. 0 % r.F., N₂
- 3. 55 % r.F., N₂
- 4. 85 % r.F., N₂
- 5. 55 % r.F., Luft
- 6. 85 % r.F., Luft
- 7. Lagerhalle

24 W, 72W: LB2-6 **48 W**: LB1-7

Messergebnisse Zusammenfassung

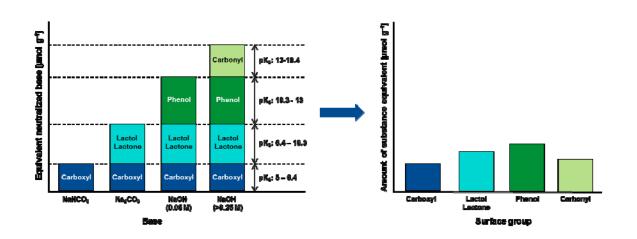
BET-Oberfläche

- Bei der Ermittlung der BET-Oberfläche können die Bereiche zur Auswertung der N₂-Isothermen voneinander abweichen
- Fehlerhafte Auswertung überlagert Änderung der BET-Oberfläche infolge der Lagerung
 - → BET-Oberfläche stellt kein geeignetes Maß zur Bewertung der Alterung der Aktivkohlen dar

Porenvolumen

- Das Porenvolumen wird bei allen Aktivkohlen bei dem gleichen Relativdruck ausgewertet
- Keine einheitlichen Trends zwischen Porenvolumen und Lagerungsbedingungen erkennbar
- Schwankungen im Bereich von \pm 10 % aufgrund der Heterogenität des Rohstoffs und der Probenentnahme
 - → Keine eindeutige Änderung des Porenvolumen in Abhängigkeit der Lagerungsbedingung

Ergebnisse Chemische Oberfläche

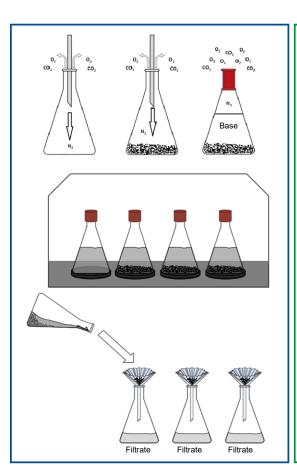

Chemische Oberfläche – Boehm Titration

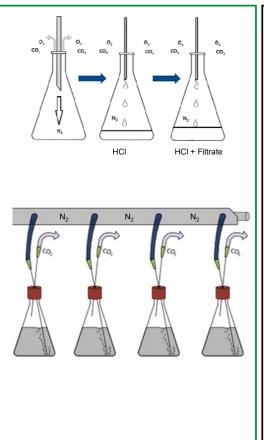
Bestimmung der Carboxyl-, Lacton/ Lactol- und Phenolgruppen

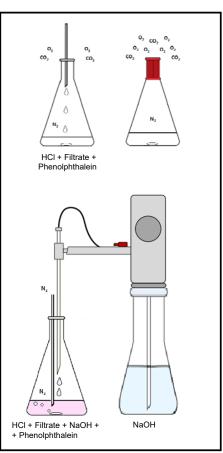
Herausforderungen

- Basische Bestandteile (Asche, basische Gruppen) führen zu einem geringeren Basenverbrauch → Unterschätzung der funktionellen Gruppen
- Saure Bestandteile (Säurereste, saure Gruppen) führen zu einem höheren Basenverbrauch
 - → Überschätzung der funktionellen Gruppen

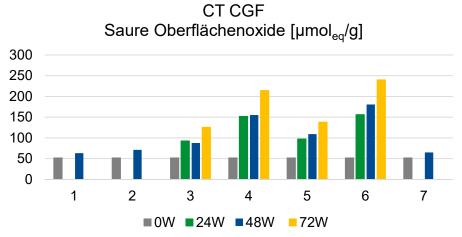
Annahme

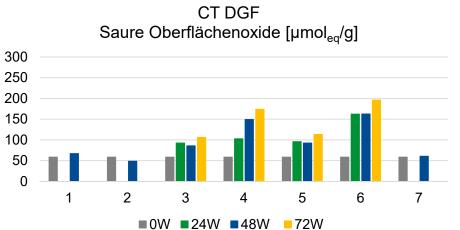

Einfluss der bei allen Basen ähnlich → Differenz der Basenverbräuche belastbar

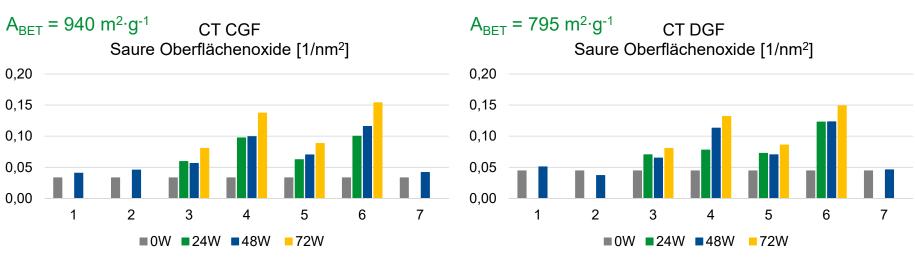

Boehm Titration -Experimentelles

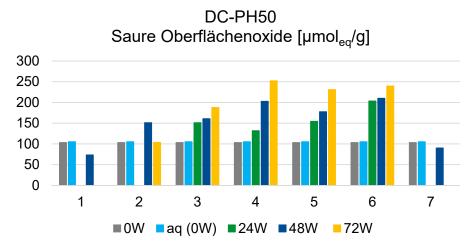

Neutralisation / Filtration

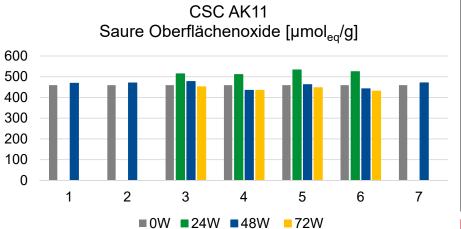
Vorbereitung


Titration

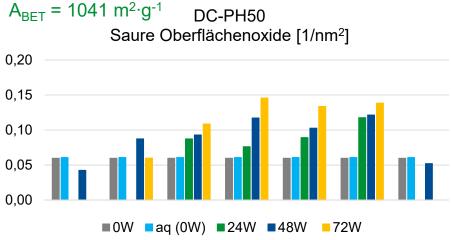


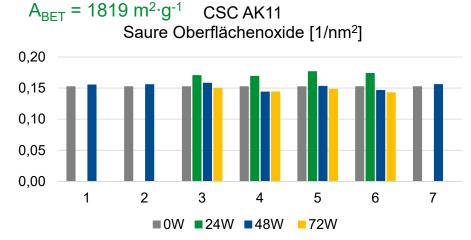

Boehm Titration – CGF und DGF


7. Lagerhalle



Boehm Titration – PH50 und CSC







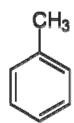
- 1. Vakuum
- 2. 0 % r.F., N_2
- 3. 55 % r.F., N₂
- 4. 85 % r.F., N₂
- 5. 55 % r.F., Luft
- 6. 85 % r.F., Luft
- 7. Lagerhalle

24 W, 72W: LB2-6 **48 W:** LB1-7

Chemische Oberfläche – Exzess Isothermen

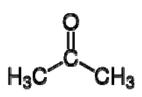
Exzess-Isothermen anhand der binären Mischung von Toluol/Aceton

Messmethode

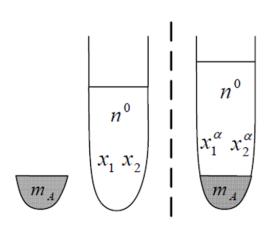

- 15 20 Messpunkte
- Variation des initialen Molenbruchs 0 < x_i < 1

Prinzip

- Beide Adsorptive konkurrieren um Adsorptionsplätze
- Charakterisierung der Bindungsstellen
- Probemoleküle besitzen eine Selektivität bzgl. der Bindungsstellen


Toluol

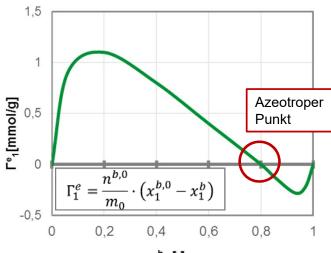
→ aromatische Oberflächengruppen



Aceton

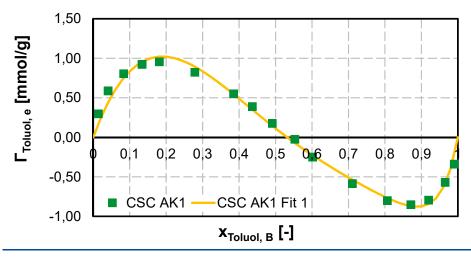
→ polare Oberflächengruppen

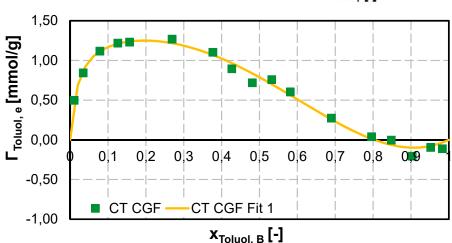
Chemische Oberfläche – Exzess Isothermen



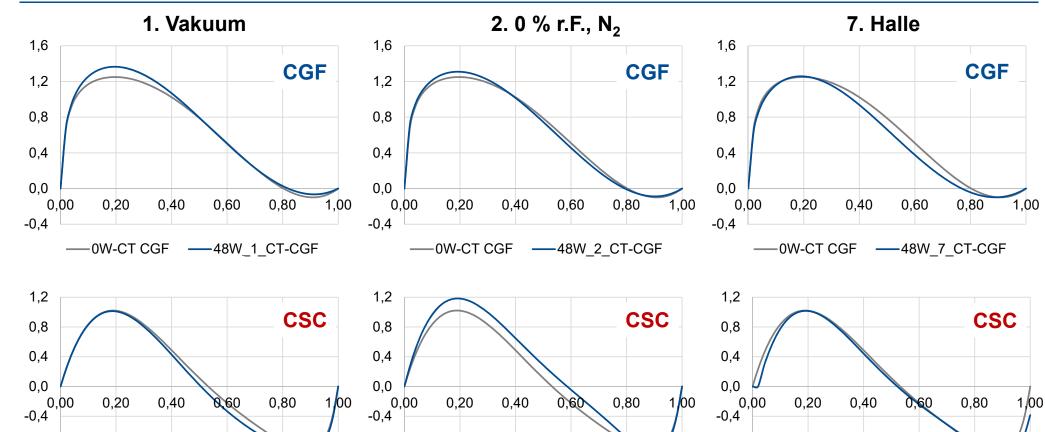
Exzess-Isothermen anhand der binären Mischung von Toluol/Aceton

Positiver Adsorptionsexzess


- → Toluol wird bevorzugt adsorbiert
- Negativer Adsorptionsexzess
- → Aceton wird bevorzugt adsorbiert


- Schnittpunkt
- → azeotroper Punkt (Verhältnis der aromatischen zu polaren Bindungsstellen)

Messpunkte mit Redlich-Kister-Fit gefittet



Exzess Isothermen – CGF und CSC

-0,8

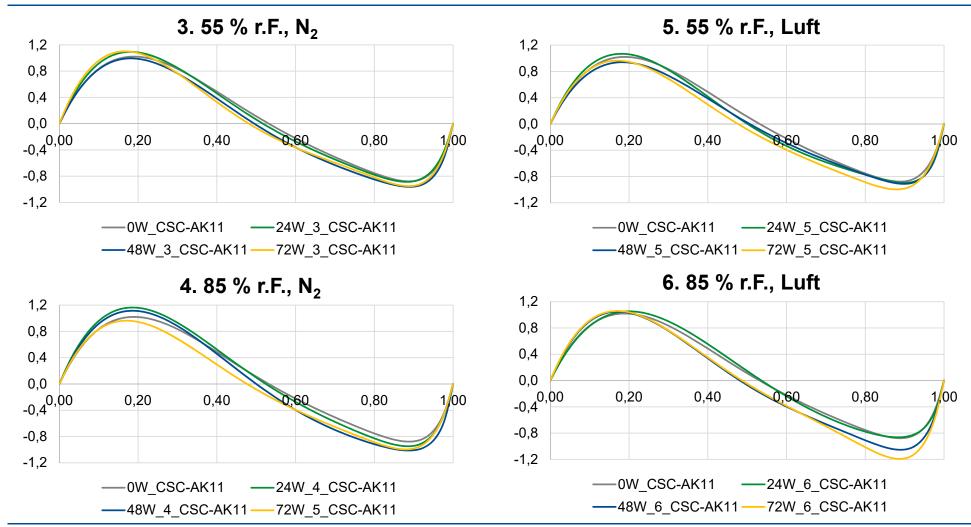
-1,2

-0,8

-1,2

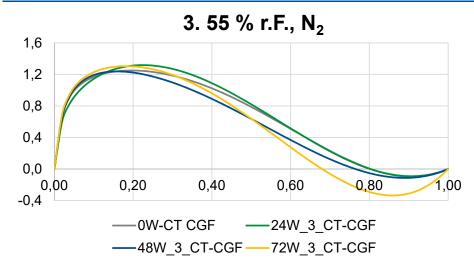
-0W_CSC-AK11 ---48W_1_CSC-AK11

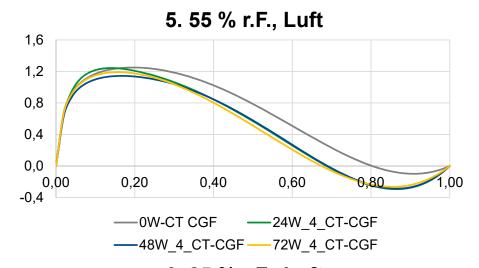
-0,8

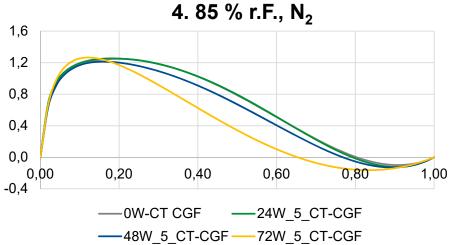

-1,2

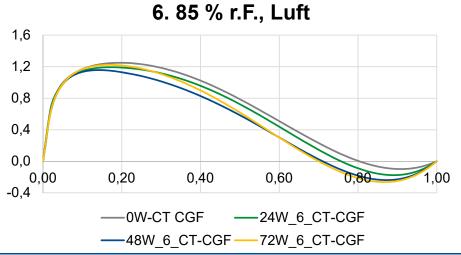
-0W CSC-AK11 ---48W 7 CSC-AK11

Exzess Isothermen – CSC








Exzess Isothermen – CGF

Messergebnisse Zusammenfassung

Boehm Titration

- CSC AK11:
 - Viele oxidische Oberflächengruppen bereits zu Beginn der Lagerung
 - Anzahl und Dichte oxidischer Oberflächengruppen nahezu unabhängig von Lagerungsintervallen und bedingungen
- DC PH50, CT CGF und DGF:
 - Deutlich geringere Anzahl an oxidischen Oberflächengruppen zu Beginn
 - Zunahme der oxidischen Oberflächengruppen mit zunehmender relativer Feuchte
 - Bei Lagerung unter Luft geringfügig stärkere Zunahme der oxidischen Oberflächengruppen als unter N₂

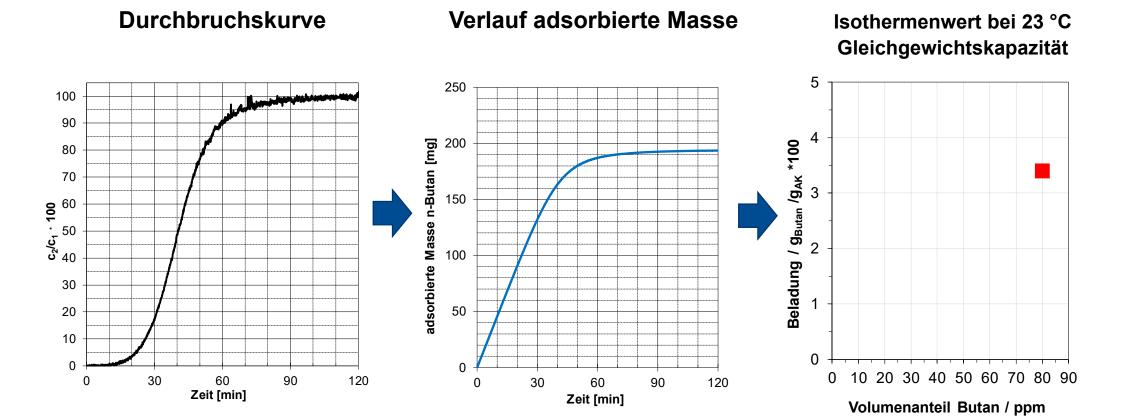
Exzess-Isothermen

- Keine Verschiebung des azeotropen Punktes bei Lagerung unter Vakuum, N₂ und in der Halle → keine Veränderung der Adsorptionspräferenz infolge konstanter Oberflächenpolarität
- CSC AK11:
 - Azeotroper Punkt bleibt gleich → keine Veränderung der Adsorptionspräferenz infolge konstanter Polarität
- CT CGF, CT DGF und DC PH50:
 - Verschiebung des azeotropen Punktes mit zunehmender Feuchte und Lagerungsdauer nach links
 - → Adsorptionspräferenz von Aceton nimmt infolge höherer Anzahl polarer Oberflächengruppen zu

Ergebnisse Durchbruchsversuche

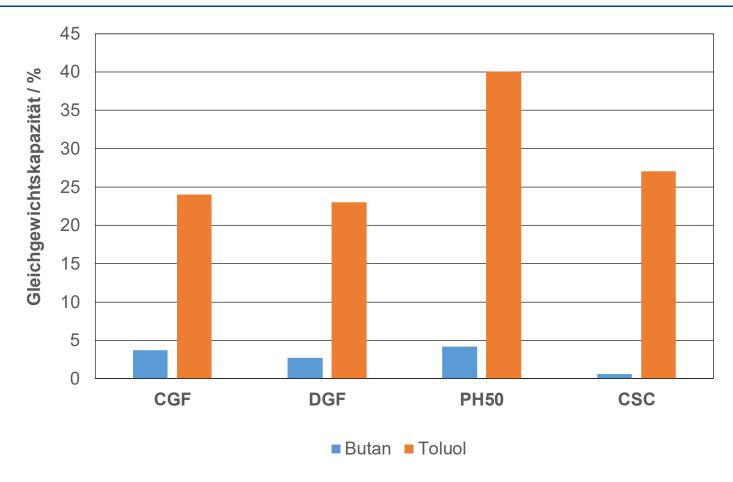
Übersicht Durchbruchsversuche

Gas	Start	0,5 Jahre	1 Jahr	1,5 Jahre	2 Jahre
NH ₃	X				X
SO ₂	X				X
NO ₂	X	x	X	X	x
Toluol	X	X	X	X	X
Butan	X	x	X	X	x
Propan	X				X


Versuchsbedingungen:

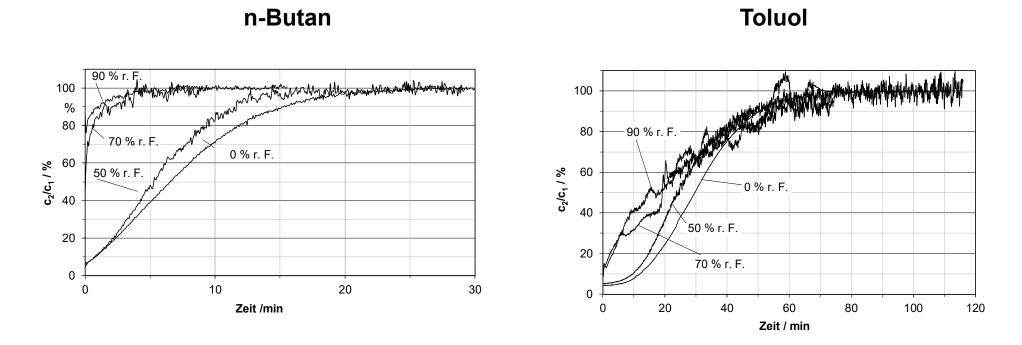
- VOC 80 ppm
- NH₃, SO₂, NO₂ 30 ppm
- 23 °C
- 50 % r. F.
- 0,2 m/s
- Adsorberdurchmesser 50 mm
- Sorbensmasse 2 g/6 g (bzw. Volumenäquivalent)
- zum Halbjahresintervall Test von Proben aus Exsikkatoren 2-6
- zum Jahresintervall Test von Proben aus Exsikkatoren 1-6 + Halle

Ermittlung der Gleichgewichtskapazität bei VOC



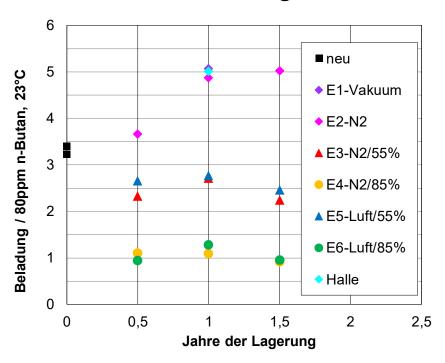
Beispiel: CGF - 6 g - n-Butan - 80 ppm - 0,2 m/s - 23 °C - 50 % r. F.

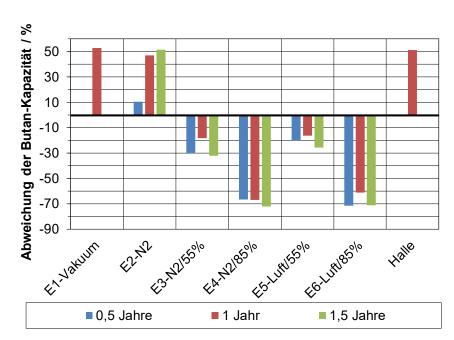
Vergleich der Gleichgewichtskapazitäten Butan/Toluol Start


Versuchsbedingungen - 6 g - 80 ppm - 0,2 m/s - 23 °C - 50 % r. F.

Einfluss der Luftfeuchte bei der Co-Adsorption von VOC

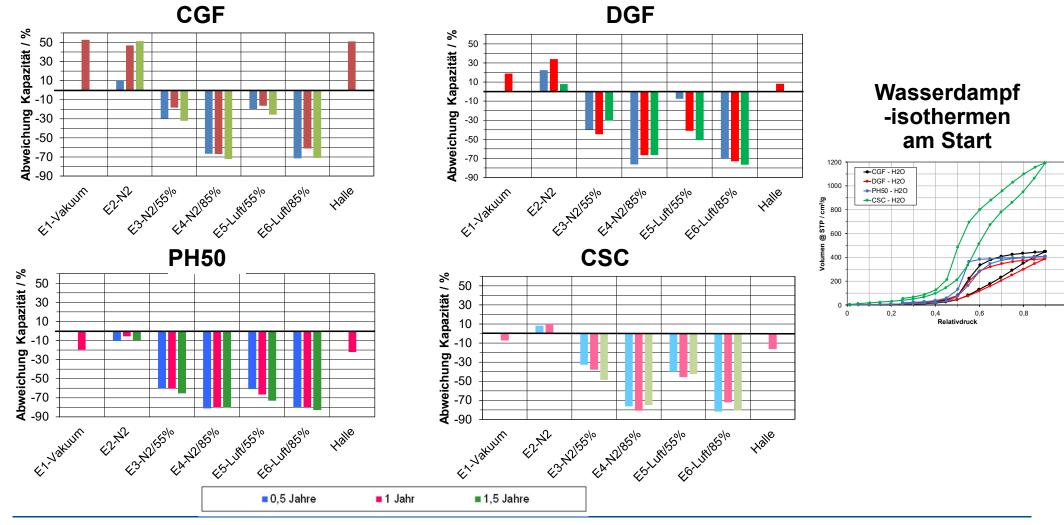
Durchbruchsversuche: 80 ppm, 23 °C, 0,2 m/s, 0,8 g kokosnussbasierte Aktivkohle


Gleichgewichtskapazitäten bei 23 °C, 50 % r. F., 80 ppm: Butan 3,3 %, Toluol 24,5 %


Darstellung der Veränderung der Gleichgewichtskapazität

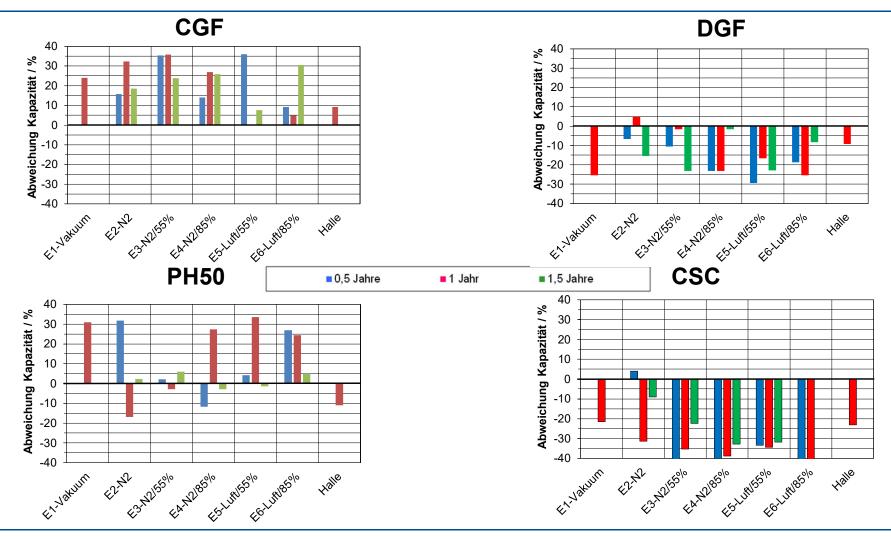
Kapazität als Funktion von Zeit und Lagerart

Prozentuale Veränderung der Kapazität in Abhängigkeit von Lagerbedingung und Zeit

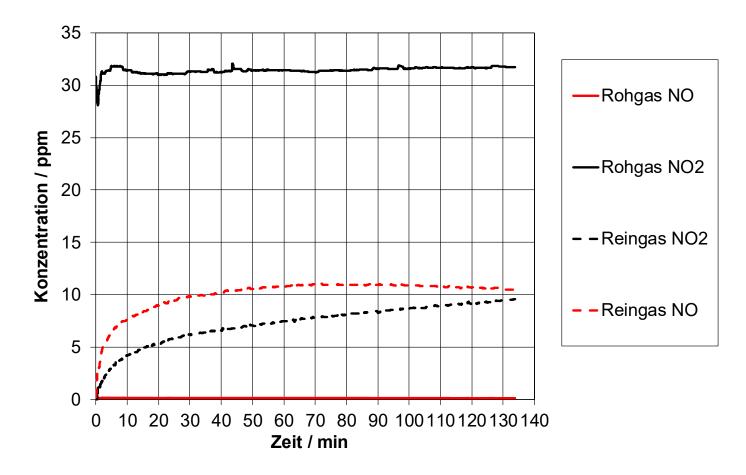


Beispiel: CGF - 6 g - n-Butan - 80 ppm - 0,2 m/s - 23 °C - 50 % r. F.

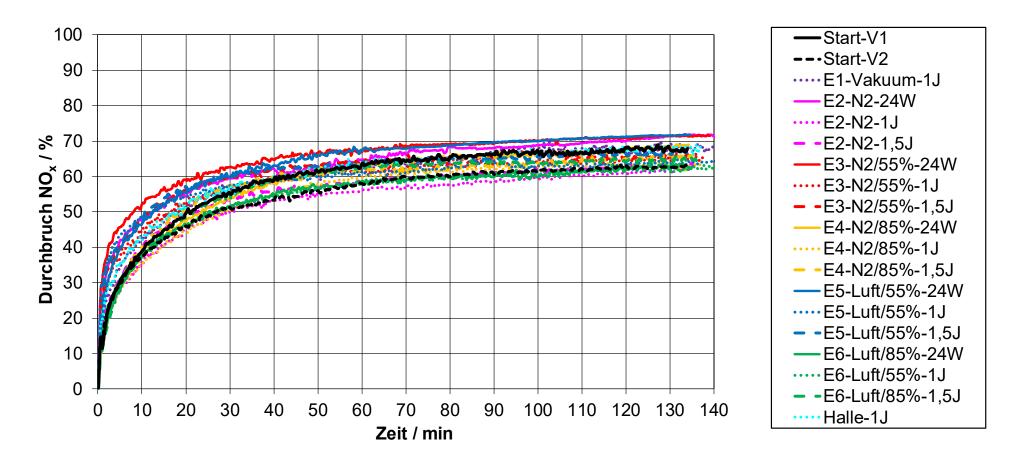
Änderung der Butan-Kapazität - Vergleich der Aktivkohlen



Änderung der Toluol-Kapazität - Vergleich der Aktivkohlen

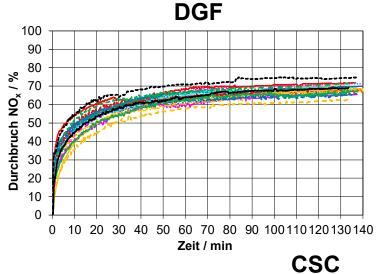


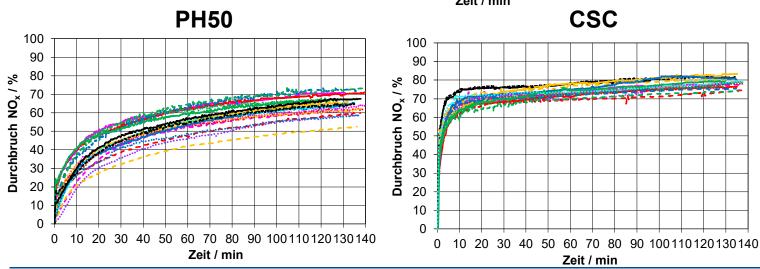
Durchbruchsversuche mit NO₂ - Charakteristika



Beispiel: CGF - 2 g - NO₂ - 30 ppm - 0,2 m/s - 23 °C - 50 % r. F.

NO_x-Durchbruch - Einfluss der Lagerung - CGF




CGF, 30 ppm NO₂, 2 g Sorbens bzw. Volumenäquivalent, 0,2 m/s, 23 °C, 50 % r. F.

NO_x-Durchbruch - Einfluss der Lagerung - DGF - PH50 - CSC

Start-V1

---Start-V2

·····E1-Vakuum-1J

--- E2-N2-24W

····· E2-N2-1J

- -E2-N2-1,5J

--- E3-N2/55%-24W

·····E3-N2/55%-1J

- E3-N2/55%-1,5J

----E4-N2/85%-24W

····· E4-N2/85%-1J

- -E4-N2/85%-1,5J

--- E5-Luft/55%-24W

·····E5-Luft/55%-1J

- -E5-Luft/55%-1,5J

--- E6-Luft/85%-24W

·····E6-Luft/55%-1J

- -E6-Luft/85%-1,5J

······Halle-1J

Durchbruchskurven - bisherige Ergebnisse

Butan

- bei allen in feuchter Atmosphäre gelagerten Aktivkohlen deutlicher Kapazitätsverlust
- der maximale Kapazitätsverlust der in feuchter Atmosphäre gelagerten Aktivkohlen unterscheidet sich nicht signifikant
- bei allen Aktivkohlen erkennbar stärkerer Kapazitätsverlust bei Lagerung bei höherer Feuchte, am stärksten ausgeprägt bei CGF, am geringsten bei PH50
- kein systematischer Einfluss der Lagerdauer erkennbar
- Kapazitätsverlust bei in feuchter Umgebung gelagerter Aktivkohle unabhängig von Atmosphäre
- kein einheitlicher Einfluss bei Lagerung im Vakuum, in N₂ und Halle

Toluol

- große und uneinheitliche Schwankungen bei der Gleichgewichtskapazität
- Ursachen bisher nicht nachvollziehbar

NO₂

Schwankungen im Bereich von ca. ± 10 %, aber keine eindeutige Änderung der NO_x-Abscheidung in Abhängigkeit der Lagerungsbedingung

Ausblick

Forschungsvorhaben

Auswahl geeigneter Aktivkohlen und Konditionierung

Arbeitspaket 4:

Ermittlung der Sorptionskapazitäten

Startwerte

24 Wochen

1 Jahr

1,5 Jahre 🗸

2 Jahre

Arbeitspaket 2:

Gezielte Alterung durch Lagerung bei spezifischen Bedingungen

Arbeitspaket 5:

Ermittlung physikalischer
Zusammenhänge der
lagerungsbedingten Alterung
von Aktivkohlen

Arbeitspaket 3:

Charakterisierung der "frischen" und gelagerten Aktivkohle

Startwerte *

8 W 🗸 48 W 🗸

16 W 🗸 72 W 🗸

24 W 🗸 96 W

Berichtswesen:

Zwischenberichte V

Projektbegleitende

Ausschüsse

Optionen für weiteres Vorgehen

Durchbruchsversuche

NO₂: ersatzloser Verzicht auf Tests nach Lagerung von 2 Jahren

Toluol: Verzicht auf Tests nach Lagerung von 2 Jahren, jedoch

- Durchbruchstests an erneut konditionierter Aktivkohle
 (Trennung der Effekte von Oberflächenchemie/Feuchtigkeit in Poren)
- Durchbruchstests mit trockener Luft als Trägergas

Butan: - Vorgehen wie geplant (Beleg zeitlicher Verlauf des Feuchteeinflusses)

- Vorgehen wie bei Toluol

SO₂ - Test nach Lagerung von 2 Jahren an ausgewählten Proben oder vollumfänglich

NH₃ - Test nach Lagerung von 2 Jahren an ausgewählten Proben oder vollumfänglich

Propan - Test nach Lagerung von 2 Jahren an ausgewählten Proben oder vollumfänglich

Vielen Dank für Ihre Aufmerksamkeit!