

Offen im Denken

2. PA Sitzung 08.12.2022

Alterung von Aktivkohlen in Sicherheitsfiltern und bei der Lagerung

IGF-Projekt FV-Nr. 21966 N, Laufzeit 01.08.2021 – 31.01.2024

IUTA - U. Sager, E. Däuber, U. Schneiderwind, B. Schunke, C. Asbach

TVT - C. Bläker, L. Gehrke, C. Pasel, D. Bathen

Ablauf

14:00 Uhr

Begrüßung der Teilnehmer & Kurzvorstellung des Projektes

14:15 Uhr | Ergebnisse Startwerte TVT & IUTA

14:45 Uhr | Ergebnisse 8 W – 16 W – 24 W

15:15 Uhr | Diskussion der Ergebnisse

16:00 Uhr | Ende

Forschungsvorhaben

Ausgangslage / Motivation

- Anfragen der Industrie zur Restlebensdauer von Aktivkohle zur Gasreinigung
- Uneinheitliche eigene Erfahrungen zur Kapazitätsminderung durch Lagerung

Umsetzung

Lagerung der Aktivkohle

Reaktionen von Molekülen aus der Gasphase mit der inneren Oberfläche

Kapazitätsminderung + Veränderung der Oberfläche

Projektziele

- Ermittlung der dominierenden Lagerungsfaktoren auf die Alterung
- Bestimmung der Änderung der Struktur- und Oberflächeneigenschaften
- Quantifizierung der Kapazitätsminderung

Forschungsvorhaben

Arbeitspaket 1:

Auswahl geeigneter Aktivkohlen und Konditionierung

Arbeitspaket 2:

Gezielte Alterung durch Lagerung bei spezifischen Bedingungen

Arbeitspaket 3:

Charakterisierung der "frischen" und gelagerten Aktivkohle

Startwerte <

8 W 🗸 48 W

16 W 🗸 72 W

24 W 🗸 96 W

Arbeitspaket 4:

Ermittlung der Sorptionskapazitäten

Arbeitspaket 5:

Ermittlung physikalischer
Zusammenhänge der
lagerungsbedingten Alterung
von Aktivkohlen

Berichtswesen:

Zwischenbericht

Projektbegleitende Ausschüsse

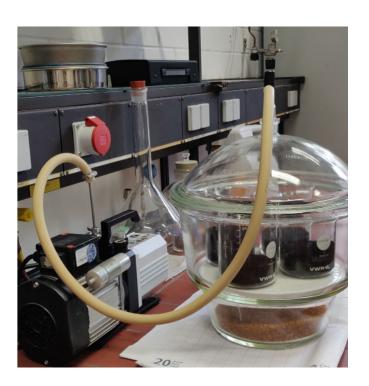
Material

Auswahl Aktivkohlen:

Firma	Name	Ausgangs- material	Aktivierung	Mesh
Carbo Tech	CGF 85	Steinkohle	Wasserdampf	8 x 30 (0,6-2,36 mm)
Carbo Tech	DGF GL	Steinkohle	Wasserdampf	8 x 30 (0,6-2,36 mm)
Donau Carbon	PH 50	Kokoskohle	Wasserdampf	30 x 60 (0,25-0,6 mm)
CSC	AK 11	Holzkohle	Phosphorsäure	10 x 20 (0,85-2 mm)

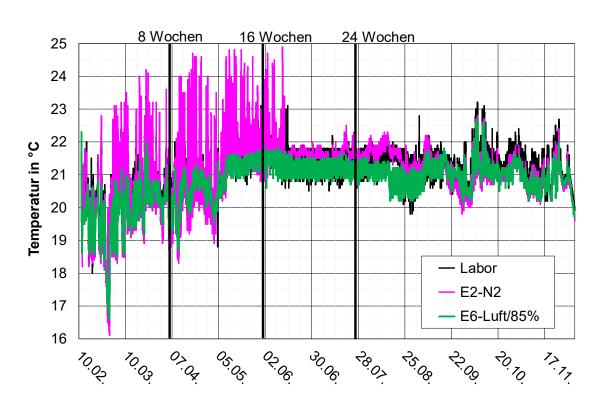
Konditionierung:

- 1. Verwendete Probenmenge 2,5 kg (pro Aktivkohle)
- 2. Ausheizen/Trocknen bei 175°C für 24h im N₂-gespülten Ofen
- 3. Aufteilung in 6 gleiche Anteile (6 Lagerungsbedingungen)


Lagerungsbedingungen

Lagerungs- bedingung	Druck	Atmosphäre	Feuchtigkeit	Temperatur				
1	Vakuum	(Luft)	-	Labor				
2	Umgebungsdruck	N_2	0 %	ca. 20 °C				
3	Umgebungsdruck	N_2	50 %	ca. 20 °C				
4	Umgebungsdruck	N_2	80 %	ca. 20 °C				
5	Umgebungsdruck	Luft	50 %	ca. 20 °C				
6	Umgebungsdruck	Luft	80 %	ca. 20 °C				
7	Umgebungsbedingungen von Halle 5/IUTA							

Lagerungsbedingungen - Vakuum

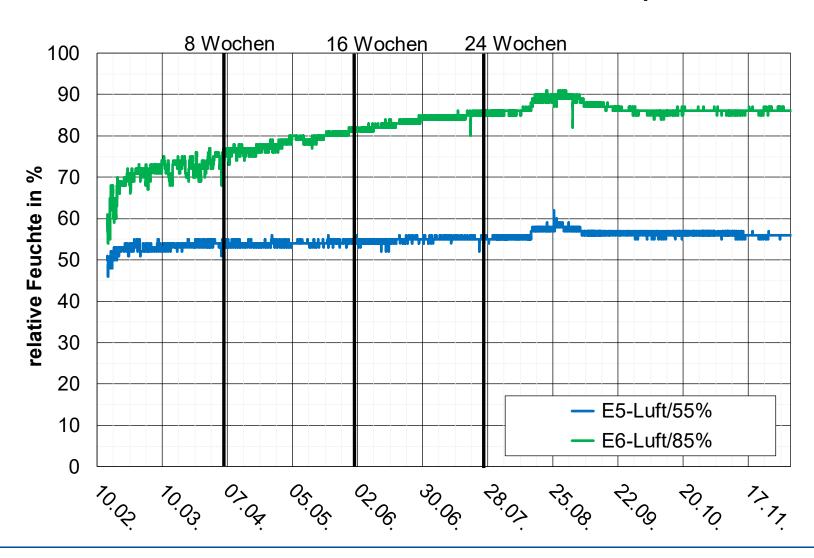


Lagerungsbedingungen 2 - 6

Einstellung der Feuchteniveaus:

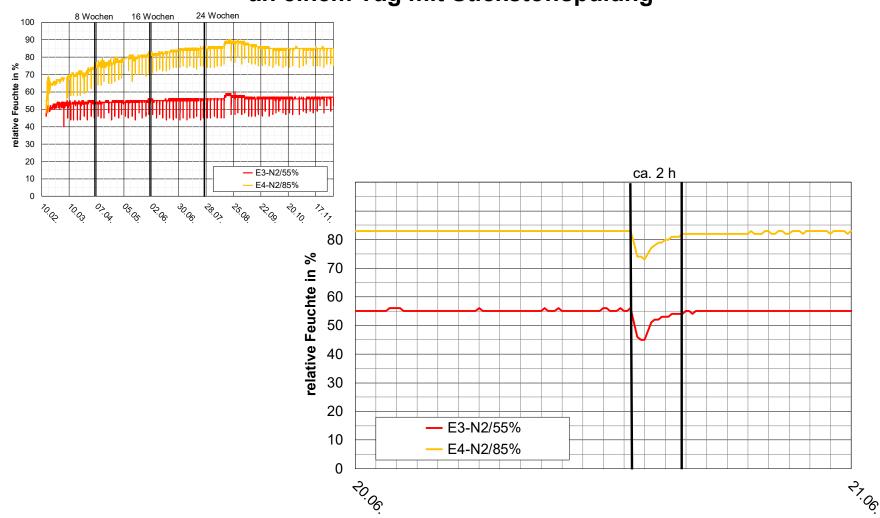
durch gesättigte Salzlösungen

55 % r. F. bei 20 °C - Magnesiumnitrat (Mg(NO₃)₂)

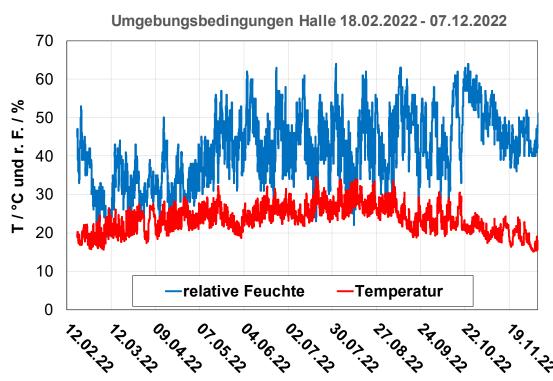

86 % r. F. bei 20 °C - Kaliumchlorid (KCI).

Lagerungsbedingungen 2 - 6

Feuchteverlauf in den Exsikkatoren mit Luftatmosphäre



Lagerungsbedingungen 2 - 6


Feuchteverlauf in den Exsikkatoren mit Stickstoffatmosphäre an einem Tag mit Stickstoffspülung

Bedingungen Hallenlagerung

Messplanung

Charakterisierung der "frischen" und gelagerten Aktivkohlen:

- 1. N₂ Isothermen (77K)
 - Charakterisierung struktureller Eigenschaften
- 2. Aceton Isothermen (298K)
 - Screening Methode zur qualitativen Charakterisierung der Oberflächenchemie

Arbeitspaket 3:

Charakterisierung der "frischen" und gelagerten Aktivkohle

Startwerte

8 W 48 W 16 W 72 W 24 W 96 W

Bei Veränderung der N₂ und/oder Aceton Isothermen während eines Lagerungsintervalls:

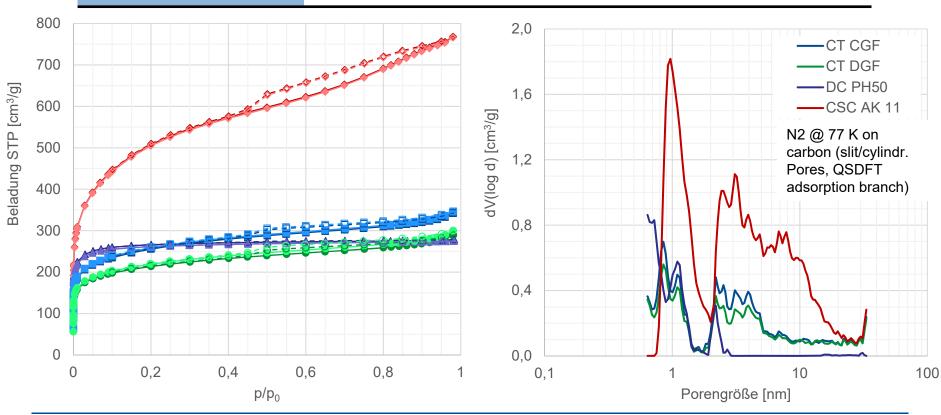
- > Detaillierte, quantitative Untersuchung der Oberflächenchemie
- 3. Boehm-Titration
 - Quantitative Analyse der sauren oxidischen Oberflächengruppen
- 4. Exzess-Isothermen mit binärer Mischung aus Toluol und Aceton
 - Bestimmung des Verhältnisses von aromatischen zu polaren Bindungsstellen
 - Rückschlüsse auf chemische Beschaffenheit der Oberfläche

Messplanung

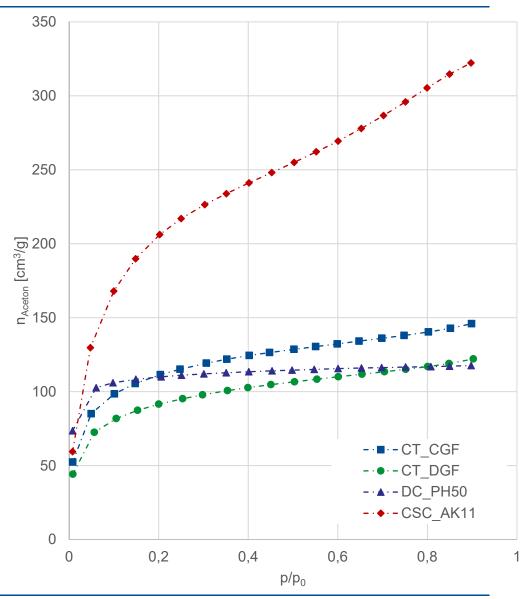
		Jan	uar	•		Feb	rua	r		ı	Mär	z			Ap	ril			Ma	ni			J	luni	i			Ju	ıli			Α	ugu	ıst	
KW	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 1	9 2	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
AiF Lagerung									8	Wo	oche	en					16	5 Wo	che	n					24	W	och	en							
AiF Messungen N ₂																																			
AiF Messungen Aceton																																			
	Se	epte	emb	er		Okt	obe	er		No	vem	ber	•	D	eze	mbe	er	Ja	nu	ar			Fe	bru	ar			M	ärz				Apr	il	
KW	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	1	2 3	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
AiF Lagerung									48 \	Woo	cher	า							I							72	2 W	och	en						
AiF Messungen N ₂]		l Me	I I	ıng	ı al	ler				_	>															
AiF Messungen Aceton								Ī	La I	ge I	run I	ıgsl I I	bed	din I	gur	nge I I	n																		
		M	lai	•		Ju	ıni	•		•	Juli				Aug	ust		Sep	ten	nbe	er		Ok	tob	er		N	ove	mb	er		De	zem	ber	
KW	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36 3	7 3	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	1
AiF Lagerung																		!	96 \	Wc	oche	en													
AiF Messungen N ₂																							 	Ие	ssı	und	a a	 ler					*		
AiF Messungen Aceton																					- 	La	gei L			•	-			en L					

Offen im Denken

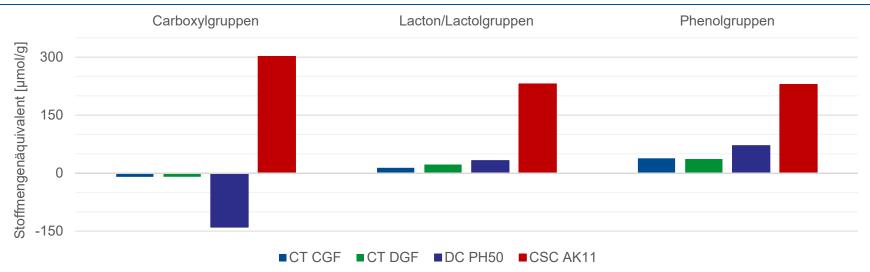
Messergebnisse Startwerte



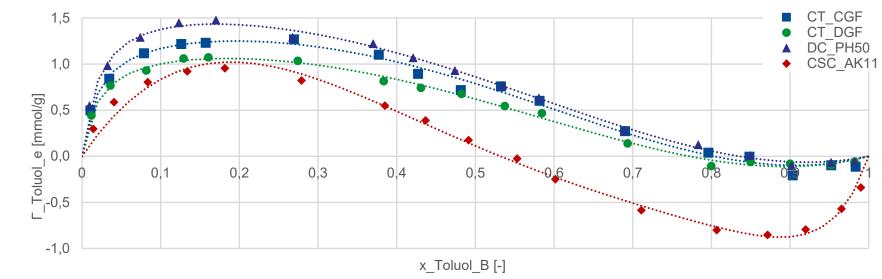
Messergebnisse - Startwerte


Probe		erfläche ² /g		envolumen ³ /g	Mikroporenvolumen cm³/g			
CSC AK11 1 CSC AK11 2	1824	1815	1,19	1,19	0,74	0,74		
CT CGF 1 CT CGF 2	934	946	0,53	0,54	0,4	0,39		
CT DGF 1 CT DGF 2	786	804	0,45	0,46	0,29	0,33		
DC PH50 1 DC PH50 2	1051	1031	0,43	0,43	0,42	0,44		

Messergebnisse - Startwerte


- Lagerung: Oxidierung oder Reduzierung der Oberfläche
 - Änderung der Anzahl der funktionellen sauren oxidischen Oberflächengruppen führen zu einer veränderten Polarität der Oberfläche
 - Aceton als polares Molekül reagiert sensitiv auf eine veränderte Oberflächenchemie
- CSC AK11 zeigt die höchste Kapazität für Aceton
- DC PH50 die geringste Adsorptionskapazität

Messergebnisse - Boehm Titration



- Bestimmung der Carboxyl-, Lacton/ Lactol- und Phenolgruppen
 - Negative Werte f
 ür die Carboxylgruppen lassen sich nicht auswerten
 - Finfluss der basischen Bestandteile auf die Neutralisationsreaktion ist identisch.
 - Differenzbildung für die Bestimmung der weiteren Gruppen (Phenol-, Lacton/ Lactolgruppen) anhand der Basenverbräuche
- Phosphorsäureaktivierte CSC AK11
 - höchste Anzahl, höchste Polarität
- DC PH50
 - zweithöchste Anzahl an Phenol- und Lacton/ Lactolgruppen

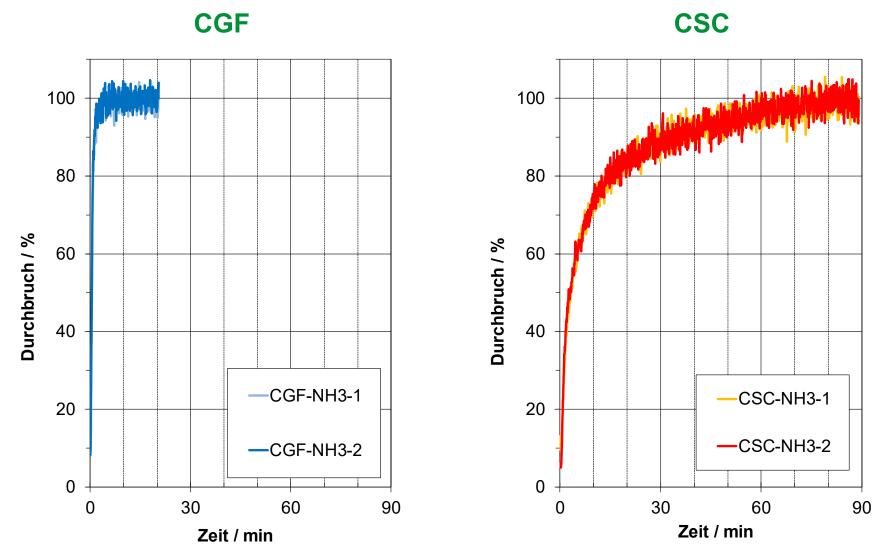
Messergebnisse - Startwerte

- Exzess-Isothermen anhand der binären Mischung von Toluol/Aceton
 - Probemoleküle besitzen eine Selektivität bzgl. der Bindungsstellen (Ähnlichkeit)
 - Toluol an aromatischen, Aceton an aliphatisch-polaren Oberflächengruppen
 - Positiver reduzierter Adsorptionsexzess: Toluol wird bevorzugt adsorbiert
 - Negativer Adsorptionsexzess: Aceton wird bevorzugt adsorbiert
 - Schnittpunkt: azeotroper Punkt (Adsorption von Toluol/Aceton im gleichen Verhältnis)
 - DC PH50 und CT CGF: ~ 85 % aromatische und ~ 15 % aliphatische Bindungsstellung
 - CT DGF: ~ 78 % aromatische Bindungsstellen
 - CSC AK11: ~ 54 % der Bindungsstellen aromatisch und ~ 46 % aliphatisch

Durchbruchsversuche - Startwerte

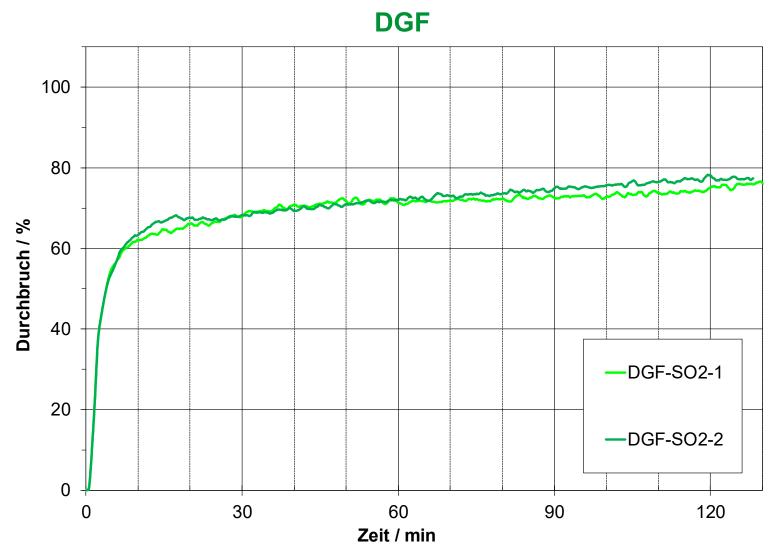
Testsubstanzen:

- Ammoniak
- Schwefeldioxid
- Stickstoffdioxid
- Toluol
- n-Butan
- Propan


Zunächst ausgewählte Versuchsbedingungen:

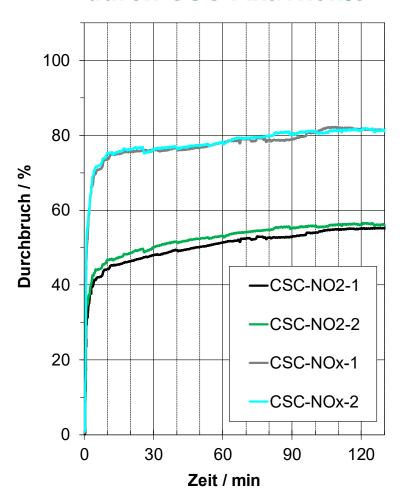
- VOC 80 ppm
- anorganische Substanzen 30 ppm
- 23 °C
- 50 % r. F.
- 0,2 m/s
- Adsorberdurchmesser 50 mm
- Sorbensmasse 2 g

Durchbruchskurven NH₃ - Startwerte

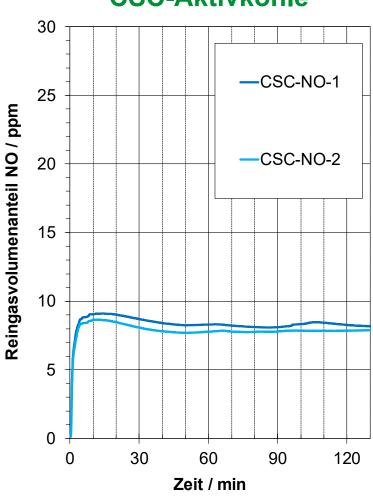


Versuchsbedingungen: 30 ppm Testsubstanz, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens

Durchbruchskurven SO₂ - Startwerte

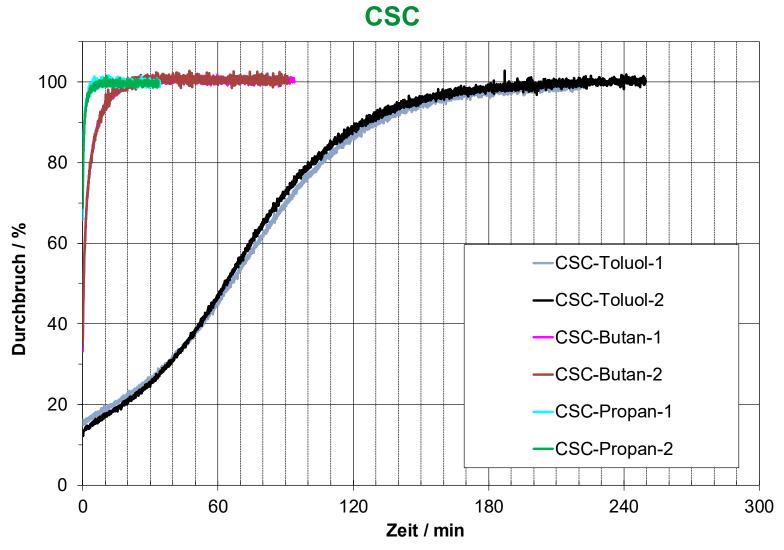


Versuchsbedingungen: 30 ppm SO₂, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens


Durchbruchskurven NO_x - Startwerte

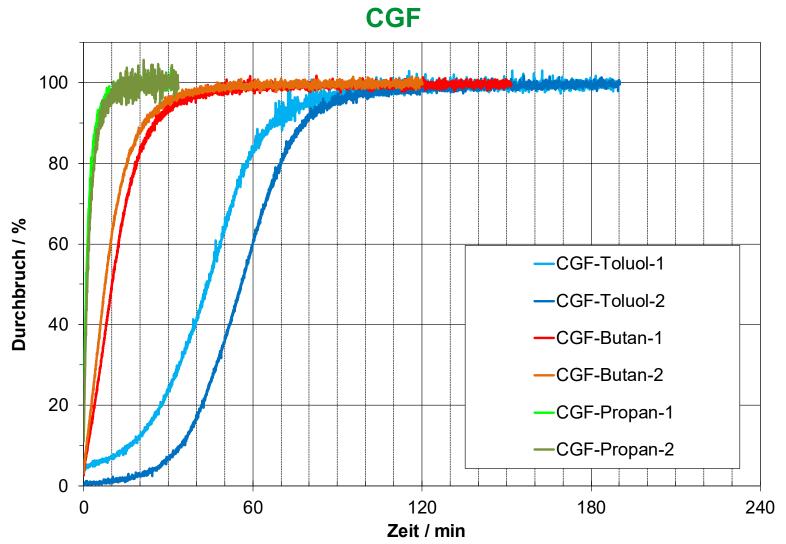
Durchbruchskurven NO₂ und NO_x durch CSC-Aktivkohle

Reingasverlauf NO bei CSC-Aktivkohle



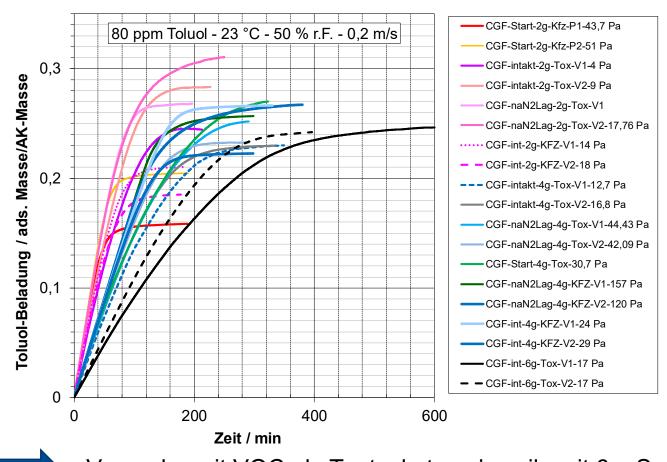
Versuchsbedingungen: 30 ppm NO₂, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens

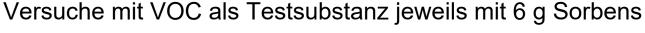
Durchbruchskurven VOC - Startwerte



Versuchsbedingungen: 80 ppm VOC, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens

Durchbruchskurven VOC - Startwerte


Versuchsbedingungen: 80 ppm VOC, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens


Durchbruchskurven VOC - Startwerte

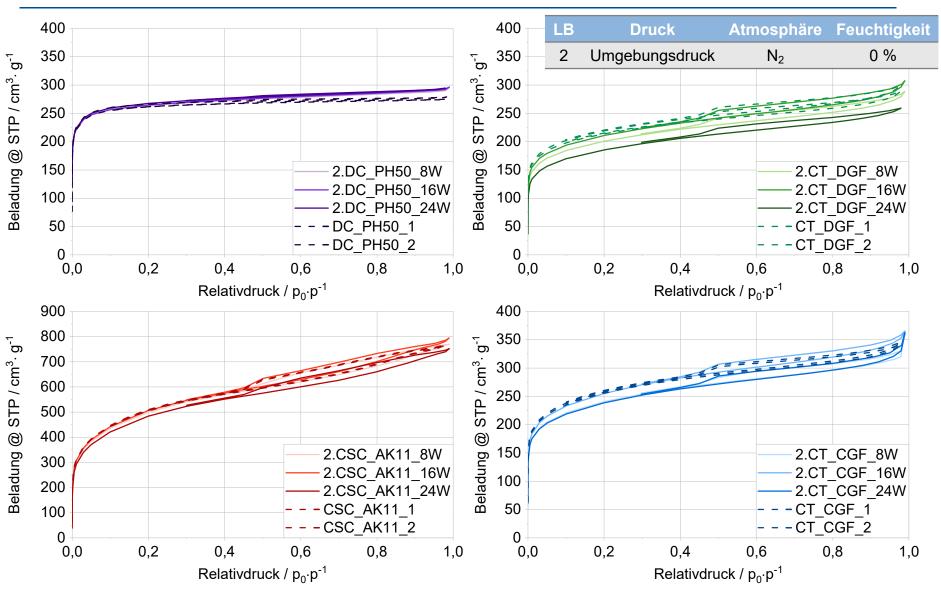
Ursachenforschung für Abweichungen bei VOC-Adsorption an Wasserdampf-aktivierten Aktivkohlen am Beispiel CGF

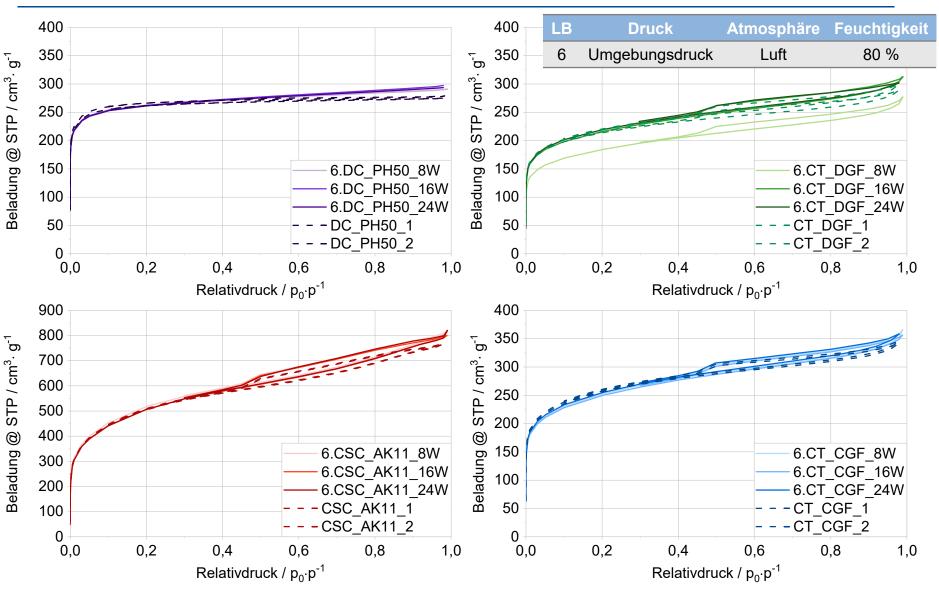
Durchbruchsverhalten - Startwerte

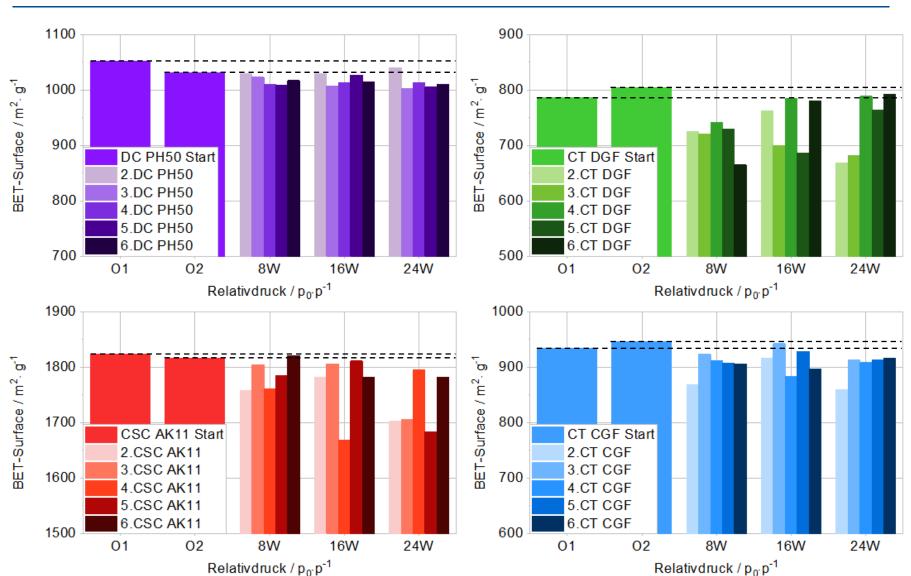
Zusammenfassung

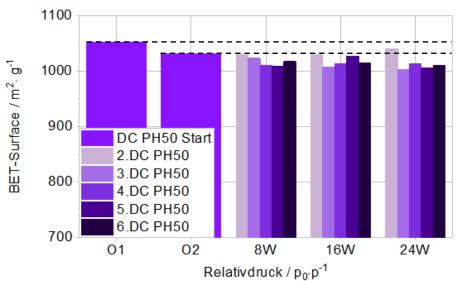
- Start-Charakterisierung der Aktivkohlen mit Durchbruchsversuchen mit 6 verschiedenen Substanzen durchgeführt
- Anpassung der Versuchsbedingungen hinsichtlich der Sorbensmasse bei Versuchen mit VOC

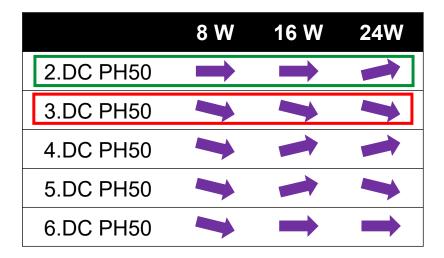
Offen im Denken

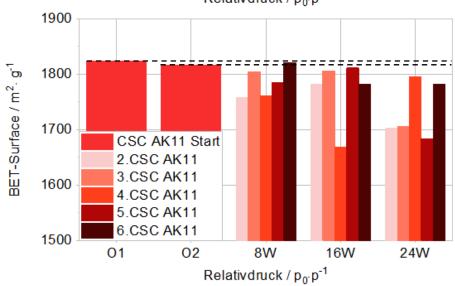

Messergebnisse 8 W – 16 W – 24 W


Messergebnisse – N₂ Isothermen

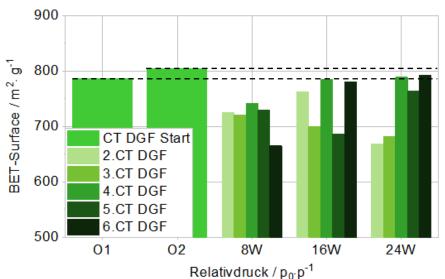

Messergebnisse – N₂ Isothermen

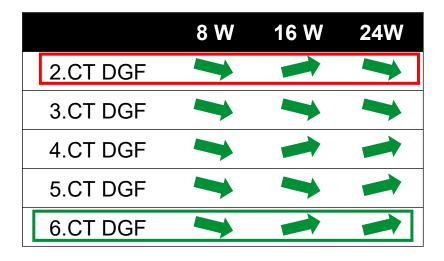

Messergebnisse – BET-Oberfläche

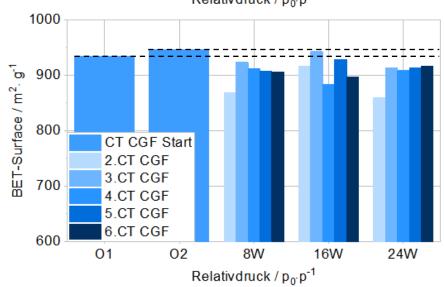




Messergebnisse – BET-Oberfläche






	8 W	16 W	24W
2.CSC AK11	-		
3.CSC AK11	-		-
4.CSC AK11	-	-	
5.CSC AK11	>		
6.CSC AK11	—	-	-

Messergebnisse – BET-Oberfläche

	8 W	16 W	24W
2.CT CGF	>		-
3.CT CGF	-		-
4.CT CGF	-	-	
5.CT CGF	-		-
6.CT CGF	-	-	

Messergebnisse – Zusammenfassung

BET-Oberfläche

DC PH50

- Bei allen Lagerungsbedingungen liegt die Veränderung bei < 4 % mit sehr geringen Schwankungen
- LB3 & LB5 (50 % rel. Feuchte) abnehmender Trend zu erkennen

CSC AK11

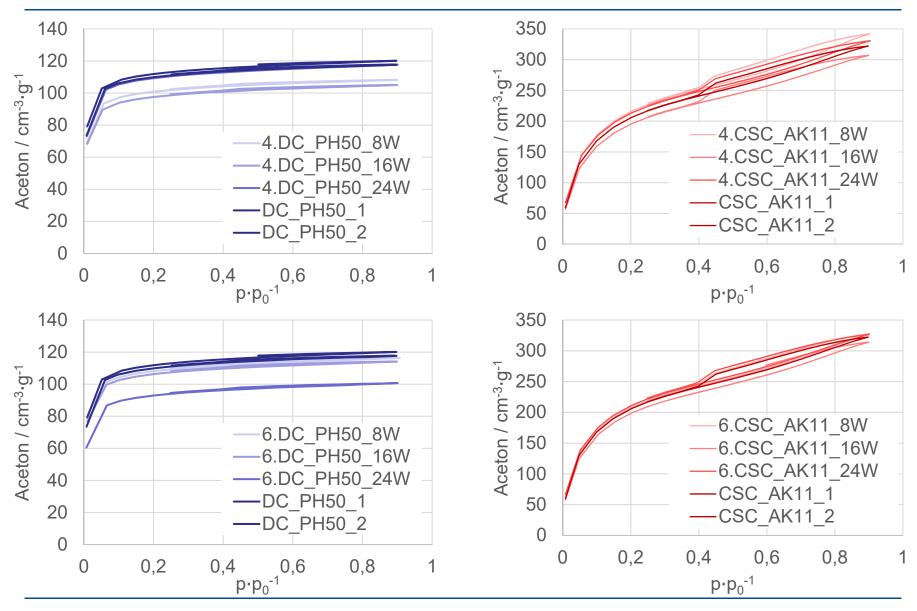
- Größere Schwankungen bei allen Lagerungsbedingungen
- Maximale Veränderung bei < 9 %
- LB6: abnehmender Trend

LB	Druck	Atmosphäre	Feuchtigkeit
2	Umgebungsdruck	N_2	0 %
3	Umgebungsdruck	N_2	50 %
4	Umgebungsdruck	N_2	80 %
5	Umgebungsdruck	Luft	50 %
6	Umgebungsdruck	Luft	80 %

Messergebnisse – Zusammenfassung

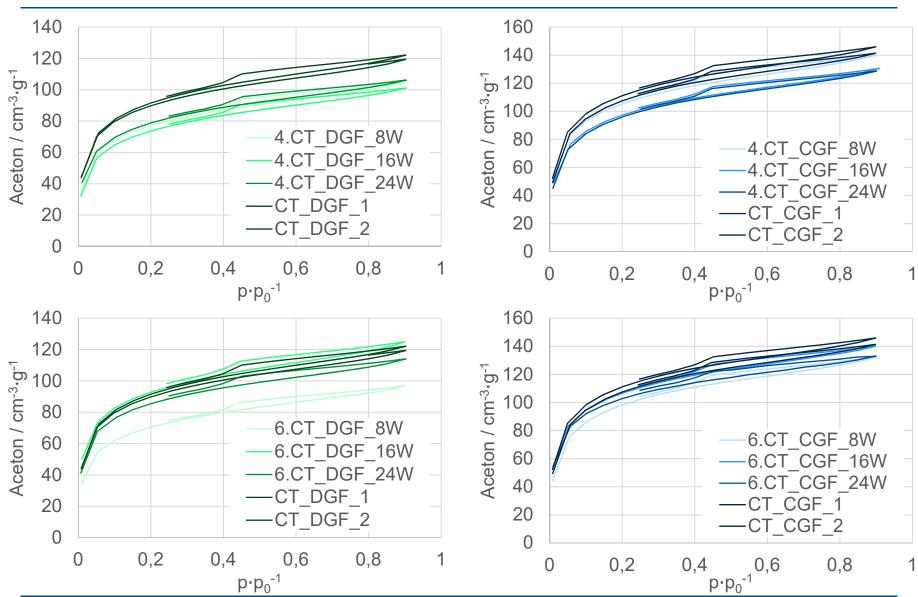
BET-Oberfläche

CT DGF


- LB2 zeigt die größte Reduktion der BET-Oberfläche (- 16 %)
- LB3 abnehmender Trend
- LB4 & LB6 (80 % rel. Feuchte) nach initialer Abnahme, zunehmender Trend
 CT CGF
- LB2 zeigt die größte Reduktion der BET-Oberfläche (- 9 %)
- LB3 & LB5 (50 % rel. Feuchte) zeigen gleichen Trend; initiale Abnahme, Zunahme, Abnahme
- LB4 & LB6 (80 % rel. Feuchte) nach initialer Abnahme, zunehmender Trend

LB	Druck	Atmosphäre	Feuchtigkeit
2	Umgebungsdruck	N_2	0 %
3	Umgebungsdruck	N_2	50 %
4	Umgebungsdruck	N_2	80 %
5	Umgebungsdruck	Luft	50 %
6	Umgebungsdruck	Luft	80 %

Messergebnisse – Aceton



Messergebnisse – Aceton

Messergebnisse – Zusammenfassung

Aceton-Isothermen

DC PH50

- LB4: Reduktion bei 8 Wochen und 16 Wochen, danach Anstieg auf Startwerte
- LB6: Reduktion der Kapazität

CSC AK11

• LB4 & LB6: kein Einfluss auf die Aceton Kapazität

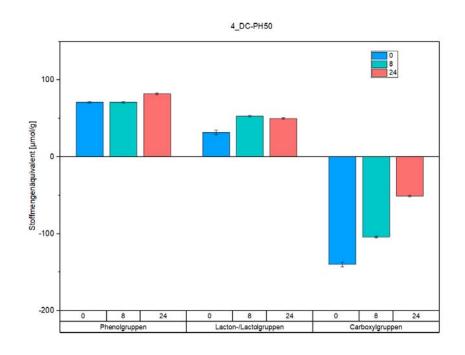
CT DGF

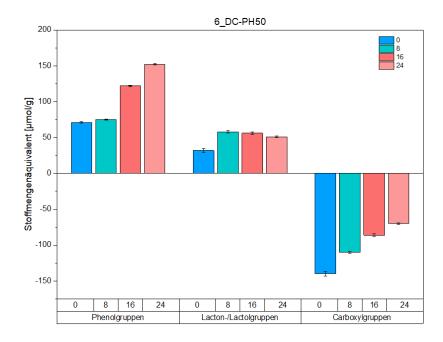
- LB4: bis 16 Wochen Reduktion, danach Anstieg
- LB6: 24 Wochen Ergebnis zeigt leichte Reduktion

CT CGF

LB4 & LB6: Reduktion der Kapazität

LB	Druck	Atm.	r.F.
4	p _u	N_2	80 %
6	p_{u}	Luft	80 %

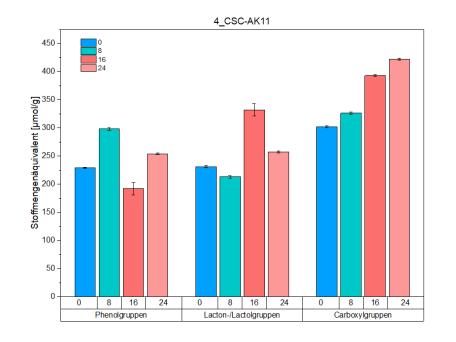


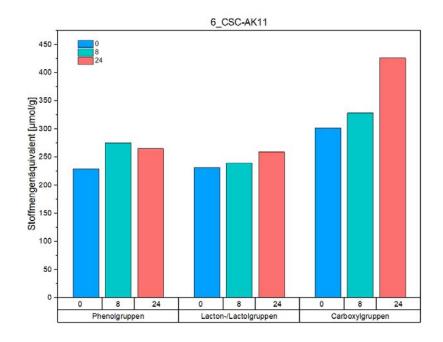


DC PH50

- LB4 & LB6
 - Zunahme der Phenolgruppen
 - Reduktion der Lacton-/Lactolgruppen
 - Zunahme der Carboxylgruppen

LB	Druck	Atm.	r.F.
4	pu	N ₂	80 %
6	p_{u}	Luft	80 %

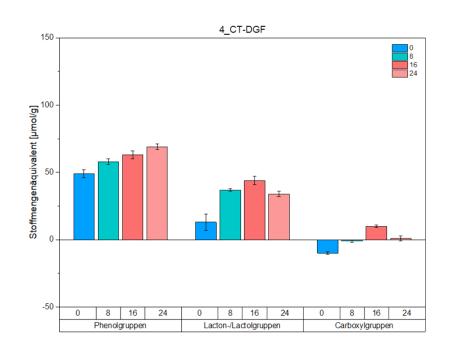

CSC AK11

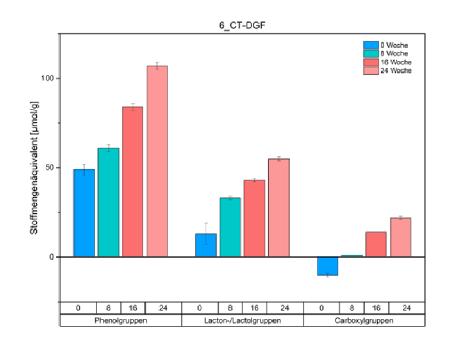

LB4: Uneinheitliches Bild

• LB6:

LB	Druck	Atm.	r.F.
4	pu	N ₂	80 %
6	p_{u}	Luft	80 %

- Zunahme der Phenol- und Lacton-/Lactolgruppen
- Zunahme der Carboxylgruppen

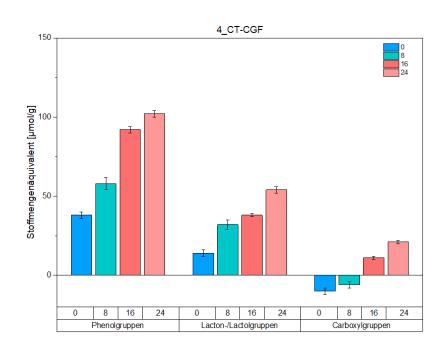

CT DGF

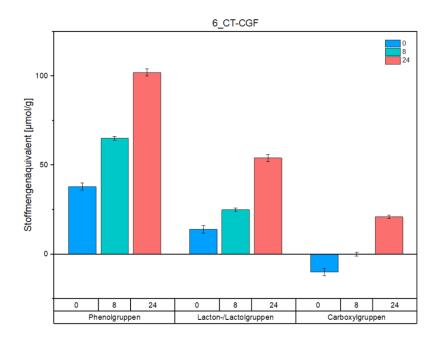

LB4: Uneinheitliches Bild

• LB6:

LB	Druck	Atm.	r.F.
4	pu	N ₂	80 %
6	p_{u}	Luft	80 %

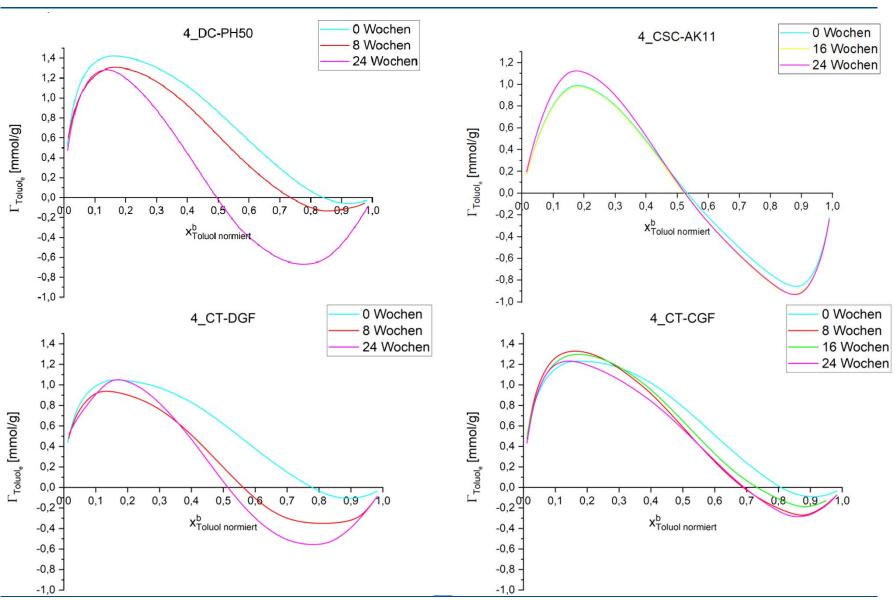
- Zunahme der Phenol- und Lacton-/Lactolgruppen
- Zunahme der Carboxylgruppen



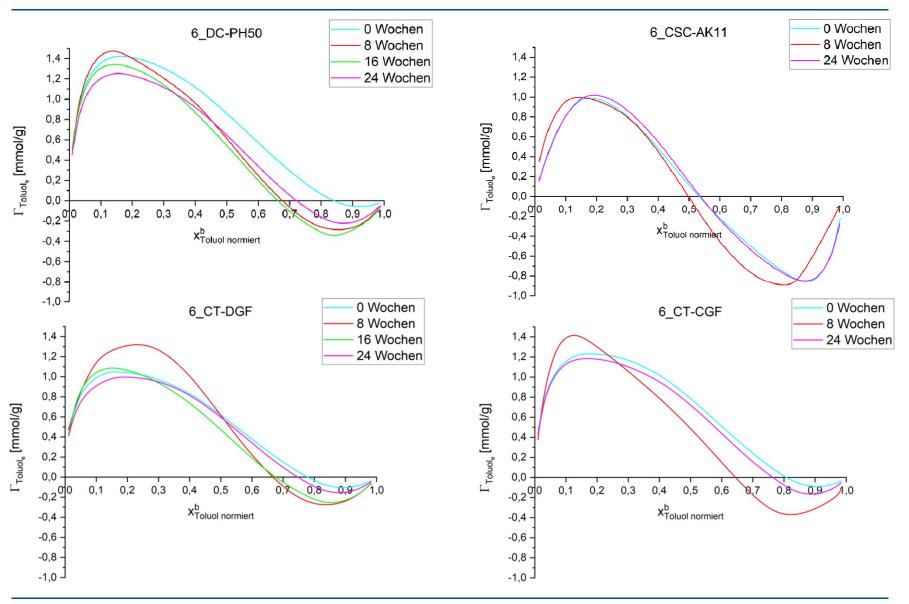


CT CGF

- LB4 & LB6:
 - Zunahme der Phenol- und Lacton-/Lactolgruppen
 - Zunahme der Carboxylgruppen


LB	Druck	Atm.	r.F.
4	pu	N ₂	80 %
6	p_{u}	Luft	80 %

Messergebnisse – Exzess Isothermen



Messergebnisse – Exzess Isothermen

Messergebnisse – Zusammenfassung

Exzess Isothermen

DC PH50

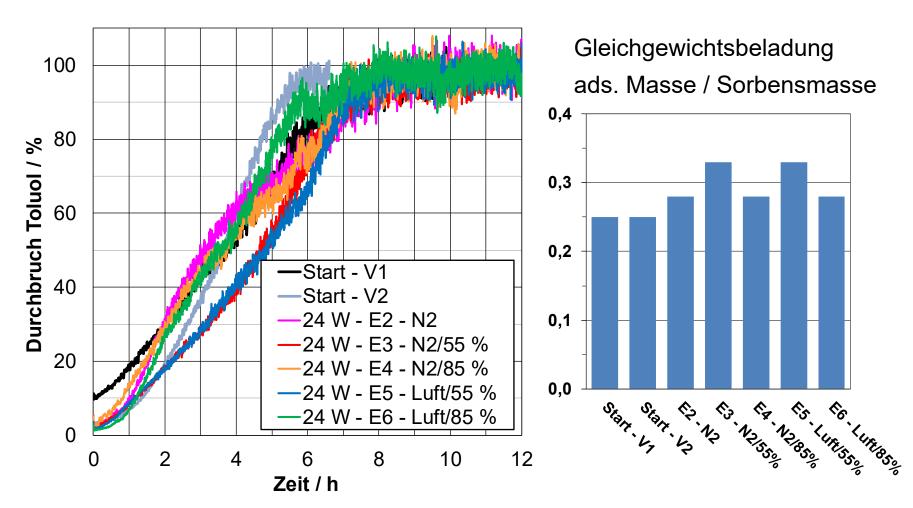
- LB4: Verschiebung des azeotropen Punktes nach links, Zunahme der polaren Bindungsstellen
- LB6: Linksverschiebung, danach wieder auf Startwerte zurück

CSC AK11

LB4 & LB6: keine Verschiebung des azeotropen Punktes nach links

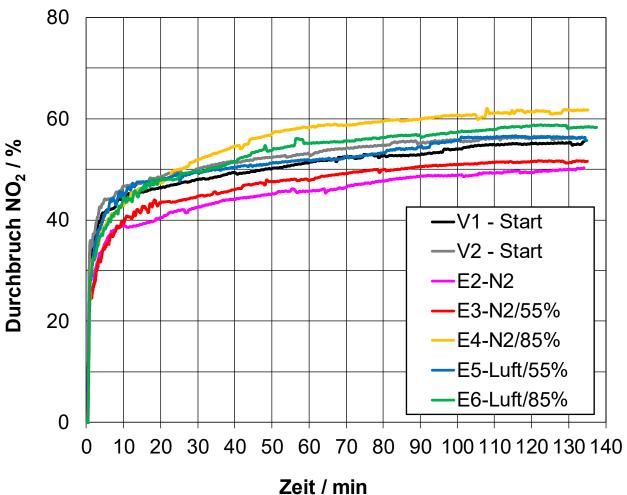
CT DGF

- LB4: Verschiebung des azeotropen Punktes nach links, Zunahme der polaren Bindungsstellen
- LB6: Linksverschiebung, danach wieder auf Startwerte zurück


CT CGF

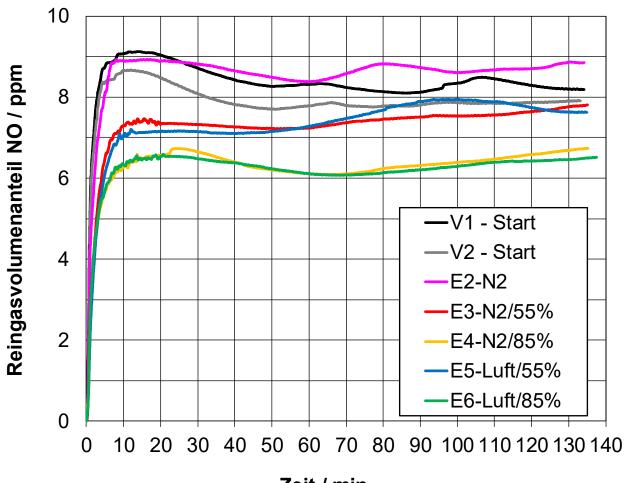
- LB4: Verschiebung des azeotropen Punktes nach links, Zunahme der polaren Bindungsstellen
- LB6: Linksverschiebung, danach wieder auf Startwerte zurück

Testsubstanz Toluol - Aktivkohle CGF



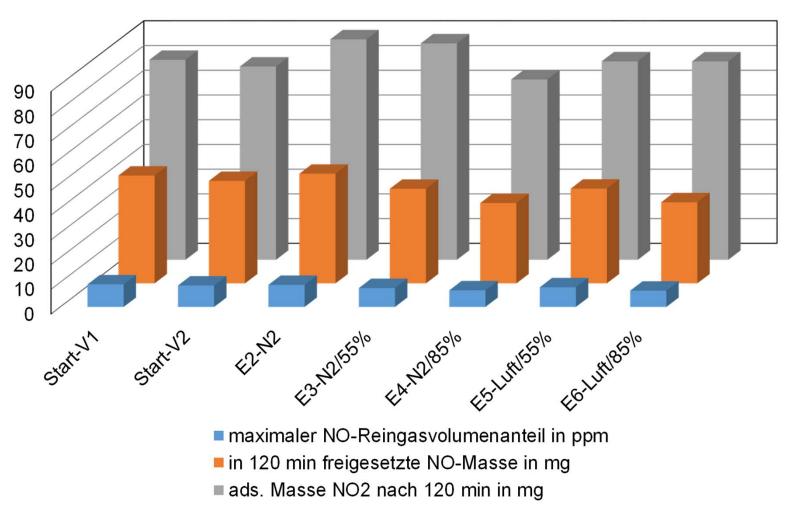
Versuchsbedingungen: 80 ppm VOC, 23 °C, 50 % r. F., 0,2 m/s, 6 g Sorbens

Testsubstanz NO₂ - Aktivkohle CSC - Durchbruch NO₂



Versuchsbedingungen: 30 ppm NO₂, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens

Testsubstanz NO₂ - Aktivkohle CSC - Reingasvolumenanteil NO


Zeit / min

Versuchsbedingungen: 30 ppm NO₂, 23 °C, 50 % r. F., 0,2 m/s, 2 g Sorbens

Ergebnisanalyse - Testsubstanz NO₂ - Aktivkohle CSC

Weitere Analyse der Abhängigkeiten

- der Durchbruchszeit und der Gleichgewichtskapazität von der Lagerungsart bei der Adsorption von n-Butan und Toluol
- des NO₂-Durchbruchs, der freigesetzten NO-Menge und des maximalen NO-Reingasvolumenanteils von der Lagerungsart bei der Adsorption von NO₂
- des SO₂-Durchbruchs und des Plateauwertes bei der Adsorption von SO₂

Offen im Denken

Analyse der Messergebnisse

Arbeitspaket 5:

Ermittlung physikalischer
Zusammenhänge der
lagerungsbedingten Alterung
von Aktivkohlen

Analyse der Messergebnisse

Einfluss der unterschiedlichen Lagerungsbedingungen auf das Durchbruchsverhalten und die Adsorptionskapazität

Toluol

- höhere Feuchte bei der Lagerung führt zu geringeren Kapazitäten
- bei Lagerung mit Feuchte ist kein Einfluss der Atmosphäre festzustellen

Stickstoffdioxid

- NO₂-Abscheidung wird bei allen Aktivkohlen durch Atmosphäre und Feuchte beeinflusst
- NO-Freisetzung wird deutlicher durch die Feuchte beeinflusst
 - steigende Feuchte führt tendenziell zu geringerer Freisetzung und geringerem maximalen Reingasvolumenanteil
 - Einfluss der Atmosphäre ist gering

Analyse der Messergebnisse

Einfluss der unterschiedlichen Lagerungsbedingungen auf die strukturellen Eigenschaften

- Allgemeine Reduktion der BET-Oberfläche
- DC PH50 zeigt die geringste Änderung der BET-Oberfläche
- CGF zeigt geringe Schwankungen
- CSC und DGF zeigen die größten Schwankungen

Einfluss der Lagerungsbedingung ist abhängig von der Aktivkohle

Einfluss der unterschiedlichen Lagerungsbedingungen auf die Oberflächenchemie

- Boehm Titration zeigt eine Zunahme der sauren-oxidischen Oberflächengruppen
- Einfluss der relativen Feuchte ist größer als der Einfluss der Atmosphäre (Luft / N₂)
- Unterschied der rel. Feuchte bei polaren Kohlen weniger stark ausgeprägt
- Bei 80% r.F. in N₂: Verhältnis polarer zu aromatischer Bindungsstellen nimmt zu
- Bei 80% r.F. in Luft: Kein einheitlicher Trend erkennbar (Überlagernde Einflüsse?)

Offen im Denken

Ausblick

Ausblick

- Lagerungsintervall **48 Wochen** ist Ende Januar beendet
 - Erstes Messintervall in dem alle LB gemessen werden
- AP5: Trends analysieren und physikalischen Zusammenhang erklären
 - Relative Feuchte
 - N₂ vs. Luft
 - Vakuum vs. Umgebungsdruck
 - → Unklarheiten in Bezug auf physikalischen Prozess klären
 - → Einfluss der strukturellen Änderungen im Hinblick auf die Adsorption von Aceton bewerten und eliminieren

Offen im Denken

Vielen Dank für Ihre Aufmerksamkeit!

