

Offen im Denken

11.11.2021 IUTA / TVT, Duisburg

Alterung von Aktivkohlen in Sicherheitsfiltern und bei der Lagerung

IGF-Projekt FV-Nr. 21966 N, Laufzeit 01.08.2021 – 31.01.2024

- U. Sager¹, C. Bläker², E. Däuber¹, B. Schunke¹, S. Haep¹, C. Pasel², D. Bathen^{1,2,3}
- 1) IUTA Institut für Energie- und Umwelttechnik IUTA e.V., Duisburg
- 2) TVT Lehrstuhl für Thermische Verfahrenstechnik, Universität Duisburg-Essen
- 3) JRF Johannes-Rau-Forschungsgemeinschaft e.V., Düsseldorf

Motivation / Projektziele

Ausgangslage / Motivation

- Anfragen der Industrie zur Restlebensdauer von Aktivkohle zur Gasreinigung
- Uneinheitliche eigene Erfahrungen zur Kapazitätsminderung durch Lagerung

Umsetzung

Lagerung der Aktivkohle

Reaktionen von Molekülen aus der Gasphase mit der inneren Oberfläche

Veränderung der Oberfläche, veränderte Kapazität möglich

Projektziele

- Ermittlung der dominierenden Lagerungsfaktoren auf die Alterung
- Bestimmung der Änderung der Struktur- und Oberflächeneigenschaften
- Quantifizierung der Kapazitätsminderung

Arbeitsprogramm

Arbeitspaket 1:

Auswahl geeigneter Aktivkohlen und Konditionierung

Arbeitspaket 4:

Ermittlung der Sorptionskapazitäten

Arbeitspaket 2:

Gezielte Alterung durch Lagerung bei spezifischen Bedingungen

Arbeitspaket 5:

Ermittlung physikalischer
Zusammenhänge zwischen
Lagerbedingungen und
Eigenschaftsveränderungen
der Aktivkohlen

Arbeitspaket 3:

Charakterisierung der "frischen" und gelagerten Aktivkohle

Berichtswesen:

Zwischen- und Abschlussberichte

Projektbegleitende Ausschüsse

Auswahl Aktivkohlen:

Firma	Name	Ausgangsmaterial	Aktivierung	Mesh
Carbo Tech	CGF 85	Steinkohle	Wasserdampf	8 x 30
Carbo Tech	DGF GL	Steinkohle	Wasserdampf	8 x 30
Donau Carbon	PH 50	Kokoskohle	Wasserdampf	30 x 60
CSC	AK 10	Holzkohle	Phosphorsäure	10 x 20

Konditionierung:

- 1. Verwendete Probenmenge 2,5 kg (pro Aktivkohle)
- 2. Ausheizen/Trocknen bei 175°C für 24h im N₂-gespülten Ofen
- 3. Aufteilung in 6 gleiche Anteile (6 Lagerungsbedingungen)

Lagerung bei Raumtemperatur (etwa 22 °C):

- 1. Vakuum (< 3 mbar)
- 2. Umgebungsdruck, Stickstoffatmosphäre (1 bar, 100% N₂)
- 3. Umgebungsdruck, Stickstoffatmosphäre, 50% r.F. (1 bar, ~ 99% N₂, ~ 1% H₂O)
- 4. Umgebungsdruck, Stickstoffatmosphäre, 70% r.F. (1 bar, ~ 99% N₂, ~ 2% H₂O)
- 5. Umgebungsdruck, Luft, 50% r.F. (1 bar, $\sim 78\% N_2$, $\sim 21\% O_2$, $\sim 1\% H_2O$)
- 6. Umgebungsdruck, Luft, 70% r.F. (1 bar, $\sim 77\% \text{ N}_2$, $\sim 21\% \text{ O}_2$, $\sim 2\% \text{ H}_2\text{O}$)

Lagerungsintervalle:

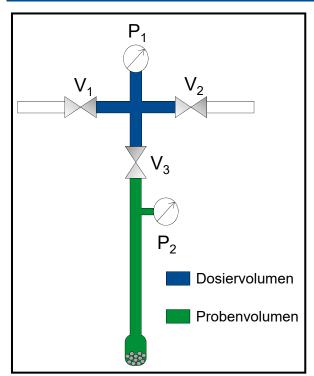
2 Monate, 4 Monate, 6 Monate, 12 Monate, 18 Monate und 24 Monate

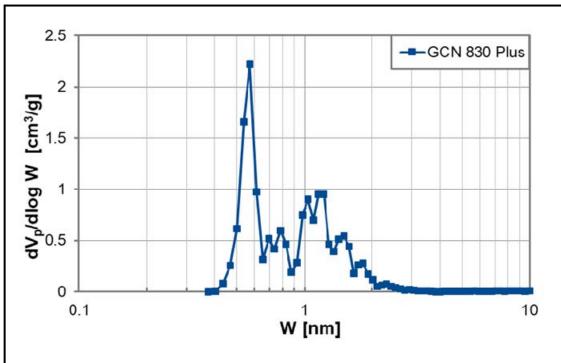
Einstellung der Luftfeuchte:

- Trocken (0% r.F.)
 - Verwendung mitgeliefertes Silica-Gel (mit Farbindikator)
- 52% r.F. bzw. 75% r.F.
 - Übersättigte Salzlösungen (Natriumdichromat, Natriumchlorid)
 - Vorversuche laufen aktuell

Charakterisierung der "frischen" und gelagerten Aktivkohlen:

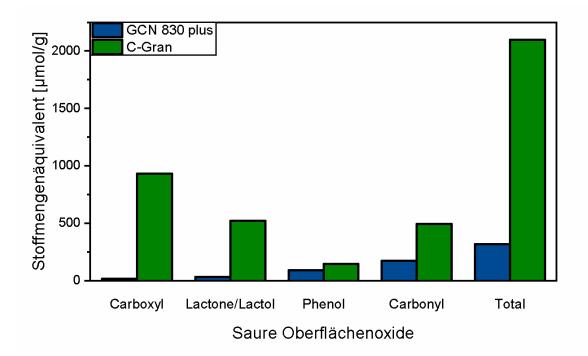
- 1. N₂-Isothermen (77K)
 - Charakterisierung struktureller Eigenschaften
- 2. Aceton-Isothermen (298K)
 - Screening-Methode zur qualitativen Charakterisierung der Oberflächenchemie


Bei Veränderung der N₂- oder Aceton-Isothermen während eines Lagerungsintervalls


- Detaillierte, quantitative Untersuchung der Oberflächenchemie
- 3. Boehm-Titration
 - Quantitative Analyse der sauren oxidischen Oberflächengruppen
- 4. Exzess-Isothermen mit binärer Mischung aus Toluol und Aceton
 - · Bestimmung des Verhältnisses von aromatischen zu polaren Bindungsstellen
 - Rückschlüsse auf chemische Beschaffenheit der Oberfläche

Gasadsorption – Volumetrie

Adsorption von Aceton:


- Polares Sondenmolekül
- Screening-Methode zur qualitativen Charakterisierung der Oberflächenchemie
 - Vergleich von Aceton-Isothermen vor und nach jedem Lagerungsintervall
 - Normierung der Aceton-Kapazitäten auf die entsprechenden N₂-Kapazitäten (zur Eliminierung von Inhomogenitäten)

Boehm-Titration

Quantitative Analyse der sauren oxidischen Oberflächengruppen

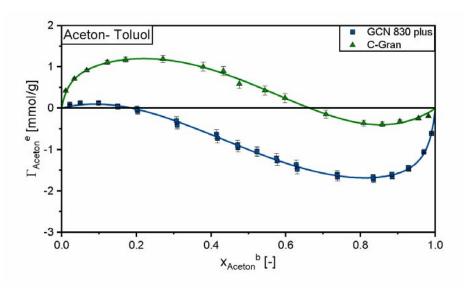
Exzess-Isothermen

Adsorptionsisothermen binärer Systeme in der Flüssigphase

Bindungsstellen

Probemoleküle

Aromatisch


Toluol

Aliphatisch polar

Aceton

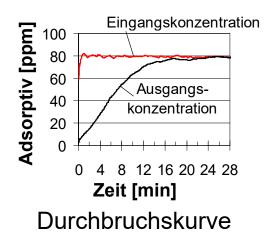
$$\Gamma_1^e = \frac{n^{b,0}}{m_0} \cdot \left(x_1^{b,0} - x_1^b \right)$$

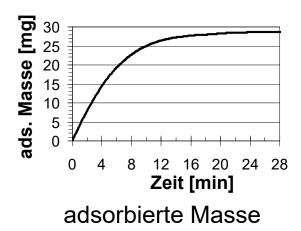
Aktivkohle	\mathbf{A}_{BET}	V_p	С	Н	0
	[m²/g]	[cm³/g]	[m-%]	[m-%]	[m-%]
GAC 830	960	0.57	89.5	0.3	4.3
C-Gran	1162	1.02	73.4	1.9	22.0

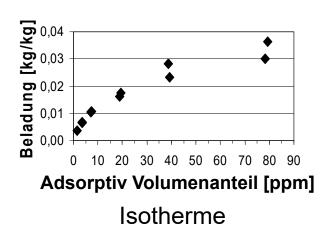
Ermittlung der Sorptionskapazitäten:

- Durchführung, wenn beim Screening Veränderungen detektiert wurden
- Durchbruchsversuche nach der Strömungsmethode

Versuchsbedingungen:


23°C, 50% r.F., Anströmgeschwindigkeit 0,2 m/s


Testgase: Toluol (80 ppm),


Propan (80 ppm),

SO₂ (18 ppm),

NO₂ (30 ppm)

Ermittlung physikalischer Zusammenhänge zwischen Lagerbedingungen und Eigenschaftsveränderung von Aktivkohlen:

Zusammenführung der Ergebnisse von AP 3 und AP 4

Identifizierung des Einflusses der Lagerungsart auf die Alterung:

- Auftragung der Qualitätsmerkmale in Abhängigkeit der Lagerungsdauer
- Fitten der Daten mittels einfacher algebraischer Gleichungen
 - Zeitliche Verläufe: Linear oder über die Zeit unterschiedlich stark ausgeprägt?
- > Diskussion physikalischer Mechanismen zwischen Gasphase und Aktivkohleoberfläche

Bewertung der Lagerungsmethoden:

- Aufwand der Methode unter anwendungstechnischen Gesichtspunkten
- Auswirkungen auf die Aktivkohlealterung
- Ableitung von Handlungsempfehlungen

Ausgewählte Veröffentlichungen

- 1. U. Sager / F. Schmidt, Adsorption of Nitrogen Oxides, Water Vapour and Ozone onto Activated Carbon. Adsorpt. Sci. Technol. 27(2) (2009), 135-145. DOI: 10.1260/026361709789625243
- 2. U. Sager / F. Schmidt, Binary Adsorption of n-Butane or Toluene and Water Vapor. Chem. Eng. Technol. 33(7) (2010), 1203-1207. DOI: 10.1002/ceat.201000086
- J. Treese / C. Pasel / M. Luckas / D. Bathen, Chemical Surface Characterization of Activated Carbons by Adsorption Excess of Probe Molecules, Chem.Eng.Tech. 39 (2016) 6, 1144-1150.
 DOI: 10.1002/ceat.201500571
- 4. C. Bläker / C. Pasel / M. Luckas / F. Dreisbach / D. Bathen, Investigation of load-dependent heat of adsorption of alkanes and alkenes on zeolites and activated carbons, Microporous Mesoporous Mater. 241 (2017), 1-10. DOI: 10.1016/j.micromeso.2016.12.037
- C. Bläker / J. Muthmann / C. Pasel / D. Bathen, Characterization of Activated Carbon Adsorbents -State of the Art and Novel Approaches, ChemBioEng Reviews 6 (2019), No. 4, 119–138.
 DOI: 10.1002/cben.201900008
- R. Ligotski / U. Sager / Th. Stoffel / F. Schmidt, Investigation of the Loading and Ageing Condition of Activated Carbon in the Adsorptive Supply Air Treatment of a Major European Airport. F & S Global Guide 2020-2022 (2020), Hrsg. E. von der Lühe, ISBN 978-3-00-059320-8

Diskussion