

13. Dezember 2018 2. Sitzung des Projektbegleitenden Ausschusses

Energielabeling für Adsorptionsfilter: Erarbeitung von Kenngrößen zur Einstufung von Adsorptionsfiltern hinsichtlich Energieverbrauch und Abscheideleistung

FV-Nr. 19146 N, Laufzeit 01.01.2017 - 31.12.2018

U. Sager, E. Däuber, A. Caspari

IUTA – Institut für Energie und Umwelttechnik e.V.

- Einleitung Hintergrund, Vorläuferprojekte, Projektziele
- Charakteristika adsorptiver RLT- und Druckluftfilter
- Prüfeinrichtungen
- Testverfahren RLT-Filter ISO 10121
- Evaluierung der Pr
 üfmethode von Druckluftfiltern ISO 12500-2
- Kennziffer f
 ür Adsorptionsfilter
- Energieeffizienz
- Leistungsparameter Adsorptionsfilter Anwendung Druckluft-Filter
- Leistungsparameter Adsorptionsfilter Anwendung RLT-Filter
- Zusammenfassung

Energielabel sollen

- Transparenz für Verbraucher schaffen
- den Marktanteil energieeffizienter Produkte erhöhen
- EU-Energielabel seit 1998
- > schrittweise für verschiedene Produktgruppen eingeführt, z. B.
 - Kühl- und Gefriergeräte
 - Staubsauger
 - Lampen und Leuchten
- Forschung zur Energieeffizienz am IUTA bisher f
 ür Druckluftfilter zur Partikel- und Öltropfenabscheidung

(Mölter-Siemens, W. et al. (2016): An Approach towards Eco-labeling of Compressed Air Filters Based on Carbon Footprint, J. Environmental Science Engineering B 5(2):57-68. doi:10.17265/2162-5263/2016.02.001)

Carbon Management in der Druckluftfilterbranche (FV-Nr. 17992 N, Laufzeit: 01.12.2013 - 30.11.2015)

Ergebnisse:

- für die Partikel-Filtration erfolgreich Kennziffern erarbeitet
- für die Adsorption sollte zunächst die Prüfmethode überarbeitet werden

Evaluation der DIN EN ISO 10121 für RLT-Filter (FV-Nr. 18516 N, Laufzeit: 01.12.2014-30.11.2017)

Ergebnisse:

- Prüfstand für Filtertests nach ISO 10121 wurde eingerichtet
- Prüfmethode nach ISO 10121-2 wurde evaluiert
- Übertragbarkeit von Testergebnissen Medien- und Filtertests wurde untersucht

- für Druckluftfilter und RLT-Filter -

Experimentelle Untersuchungen

Durchbruchstests und Messung der Druckdifferenz ∆p Druckluftfilter: Evaluierung/Optimierung ISO 12500-2

Analyse der Leistungsparameter

systematische Untersuchung des Filterangebotes

Erarbeitung von Kennziffern und Klassifizierungsmöglichkeiten

Kombination aus Leistungsparametern und Druckdifferenz evtl. spezifisch für Filterbauart oder Anwendung

Filtermedien

Raumluftfilter - Bauformen

Druckluftfiltertypen

Prüfstand für RLT-Filter

Vergleichsprüfung nach DIN EN ISO 10121-2:

- Durchbruchsversuche bei
 - 23 °C ± 0,5°C
 - 50 % ± 3 %
 - Nennvolumenstrom ± 3 %
 - Testsubstanzen: Toluol, SO₂, NH₃
 - Testkonzentrationen: 9 ppm_V \pm 5 % (90 ppm_V \pm 5 %)

Aufnahme der Druckdifferenz-Volumenstrom-Kurve

- bei 50, 75, 100 und 125 % des Nennvolumenstroms
- bei V_N = 3400 m³/h Messung bei 1700 2550 3400 4250 m³/h

Testprozedere Druckluft-Filter

Testmethode nach ISO 12500-2:

- Durchbruchsversuche bei
- 20 °C ± 5 °C
- 7 bar_{\ddot{U}}, 8 bar_a
- Nennvolumenstrom;
- Testsubstanz: n-Hexan;
- Testkonzentration: 1000 mg/kg_{tr DL}

> Evaluierung:

- Tests mit geringerer n-Hexan-Konzentration (100 mg/kg statt 1000 mg/kg), wenn Durchbruch zu langsam, Erhöhung der Testkonzentration, wenn Durchbruch zu schnell, Senkung der Testkonzentration
- Untersuchung des Temperatureinflusses

Ergebnisse Druckluft-Filter-Tests

 \Rightarrow Zeit bis zu einem bestimmten Durchbruch

 $\Rightarrow \Delta p$

 \Rightarrow adsorbierte Masse bis zu einem bestimmten Durchbruch

Durchbruchskurven bei 100 mg_{Hexan}/kg_{DL}

100 mg_{Hexan}/kg_{DL}, 20 °C, 7 bar_{\ddot{U}}, -X m^3/h

AK – Kartusche mit Aktivkohle, M – gewickeltes Medium, pM – plissiertes Medium

Angepasste Testkonzentration

20 °C, 7 bar_{\ddot{U}}, 75 m³/h

Sorbensmenge vs. Durchbruchszeit

Masse Aktivkohle im Filter [g]

300

250

200

150

100

50

0

Zeit bis zum 80-%-Durchbruch [min]

iuta

Einfluss der Testtemperatur

Bewertung von Adsorptionsfiltern

Energieeffizienz von Adsorptionsfiltern

- Energieverbrauch ~ Druckdifferenz über Filter
- bei Adsorptionsfiltern ungefähr konstant über Betriebszeit

RLT-Filter: Δ **p-Volumenstrom-Kurven**

∆p-Verteilung Druckluft-Filter

∆p ca. 20 - 550 mbar bei Volumenströmen zwischen 50 und 100 m³/h

Leistungsparameter Adsorption

K_E = Nutzen/Aufwand

Nutzen:

- m_{ads-i-x} adsorbierte Masse des Stoffes i bis zu einem bestimmten Durchbruch (z. B. x %) in Kombination mit der Effizienz
- die Zeitspanne t_x bis zu diesem Durchbruch
- Nutzen wird durch Sofortdurchbruch SDB gemindert

Aufwand:

- Ventilatorleistung (Δp)

Entdimensionierung durch Bezug:

- auf die maximal zu adsorbierende Masse des Stoffes i,
- auf eine Referenzdurchbruchszeit t_R,
- die kinetische Energie des Luftstroms im freien Strömungsquerschnitt

	t _x	Zeit bis x % Durchbruch
$K_{E1} = \frac{\frac{t_X}{t_r} \cdot \frac{m_{i-ads-x}}{c_{i,1} \cdot \dot{V} \cdot t_X} \cdot (1-SDB)}{\frac{\dot{V} \cdot \Delta p}{2}}$	t _r	Referenzzeit
	m _{i-ads-x}	adsorbiert Masse bis zu einem Durchbruch von x %
	C _{i,1}	Testkonzentration
	V	Volumenstrom
$\frac{\dot{m}_{L}v^{2}}{2}$	SDB	Sofortdurchbruch
L	Δp	Druckdifferenz
	m் _L	Luftmassenstrom
	V	charakteristische Luftgeschwindigkeit

Kennziffer für Druckluft-Filter

Durchbruchskurven DL-Filter unterschiedliche Typen

K_{E1} Druckluft-Filter – gewickeltes Medium – 100 mg/kg

Duisburg, 13.12.2018

K_{E1} Druckluft-Filter – plissiertes Medium – 100 mg/kg

Duisburg, 13.12.2018

iuta

für $t_R = 5$ h und x = 80

	Volumen- strom	Δр	K _{F1}
	m³/h	mbar	* 10^8
AK1	75	20,6	13,1
AK2	75	23,6	10,7
AK4	90	145,3	16,0

1000 mg_{Hexan}/kg_{DL}, 20 °C, 7 bar_ü

iuta

..... bei gesonderter Betrachtung von

mit 100 oder 1000 mg_{Hexan}/kg_{DL} getesteten Filtern

 \Rightarrow plausible Kennziffern

Einfluss Testkonzentration auf K_{E1}

bei steigender Testkonzentration sinkt die Durchbruchszeit

- zu berücksichtigen: erhöhte zugeführte Masse
 - verändertes Gleichgewicht
- ✤ Zusatzfaktoren in K_E: Testkonzentration c₁ im Verhältnis zu 100 mg/kg
 - Verhältnis der Gleichgewichtsbeladung 100 mg/kg und c₁

$$K_{E1}(100 \text{ mg/kg}) = 85,7 \qquad \qquad K_{E2}(100 \text{ mg/kg}) = 86,11 \\ K_{E1}(300 \text{ mg/kg}) = 34,3 \qquad \qquad K_{E2}(300 \text{ mg/kg}) = 84,37 \\ K_{E1}(1000 \text{ mg/kg}) = 13,1 \qquad \qquad K_{E2}(1000 \text{ mg/kg}) = 85,82 \\ \end{cases}$$

Überprüfung an weiterem Filter erfolgreich

Nachteil: Adsorptionsisotherme muss bekannt sein

Abhilfe: evtl. feste Verhältnisse der Gleichgewichtsbeladung verwenden

Kennziffern für RLT-Filter

RLT-Filter: Durchbruchskurven von Toluol – V-Zellen

für $t_R = 10$ h und x = 60

V-Zelle	Δp	K _{E1}
	Pa	-
А	60	4,45
В	59	4,63
С	61	2,44
D	59	1,45

AK-Massen von ca. 2 – 4 kg

V-Zellen, 23 °C, 50 % r. F., c₁ Toluol = 9 ppm, 3400 m³/h

RLT-Filter: Durchbruchskurven von Toluol

9 ppm Toluol, 23 °C, 50 % r. F.

RLT-Filter: Durchbruchskurven von Toluol

Kartuschenfilter, 800 m³/h, Toluol, 23 °C, 50 % r. F. \Rightarrow K₁(9 ppm) = 1,47 K₁(83 ppm) = 0,26

- f
 ür Kartuschenfilter evtl. Anpassung der Testkonzentration oder der Kennziffer
- bei V-Zellen, Panel- bzw. Taschenfilter bei gesonderter Betrachtung der Bauformen und angepasstem x
 ⇒ plausible Kennziffern

RLT-Filter: Durchbruchskurven von NH₃

9 ppm NH₃, 23 °C, 50 % r. F.

RLT-Filter: Durchbruchskurven von SO₂

9 ppm SO₂, 23 °C, 50 % r. F.

Für adsorptive RLT- und Druckluft-Filter:

- Schaffung eines Überblicks über die Leistungsfähigkeit von Adsorptionsfiltern
- Verknüpfung von Abscheideleistung und Energiebedarf
- Bereitstellung einfach handhabbarer Kennziffern

.... für Ihre Aufmerksamkeit

.... für die Förderung:

Das IGF-Vorhaben 19146 N der Forschungsvereinigung Institut für Energie- und Umwelttechnik e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

