

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Institut für Energieund Umwelttechnik e.V.

Herzlich Willkommen

Institut für Technische Chemie, Universität Leipzig

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Institut für Energieund Umwelttechnik e.V.

Entwicklung eines energieeffizienten Verfahrens zur katalytischen Niedertemperatur-Entfernung von NO_x aus industriellen Abgasen

1. Sitzung des projektbegleitenden Ausschusses des IGF-Vorhabens Nr. 18515N

Marcus Kasprick Wladimir Suprun Roger Gläser

Institut für Technische Chemie, Universität Leipzig Margot Bittig Sabine Kreckel

Institut für Energie und Umwelttechnik e. V., Duisburg

29. Juli 2015, Leipzig

Einführung in das Projekt

Drei Aufgabenstellungen des Projekts

1.

Entwicklung maßgeschneiderter Katalysatoren und Laboruntersuchungen zur Umsetzung von NO_x in Anwesenheit von NH₃ und hoher Gasfeuchte bei niedrigen Temperaturen (< 200°C)

2.

Aufbau und Betrieb einer Laboranlage zum messtechnischen Nachweis der Leistungsfähigkeit

3.

Optimierung des verfahrenstechnischen Konzepts auf Basis der Versuchsergebnisse

Projektbegleitenden Ausschuss

- ADSOR-TECH GmbH, Premnitz
- Blücher GmbH, Erkrath
- CarboTech AC GmbH, Essen
- CRI Catalyst Leuna GmbH, Leuna
- Eproplan GmbH, Stuttgart
- ete.a GmbH, *Lich*
- GEA Deutschland
- Huntsman Pigments and Additives
- LÜHR FILTER GmbH Co. KG, Stadthagen
- M&C TechGroup Germany GmbH, *Ratingen*
- Nederman Filtration GmbH, *Friesenheim*
- Palas GmbH, *Karlsruhe*
- Rheinkalk GmbH, Wülfrath
- Tiede- & Niemann Ingenieurgesellschaft mbH

Inhalt

- Projekt-Schwerpunkte: Anforderung an NT-NH₃-SCR
- Stand der Technik
- Katalysatorsynthese
- NH₃-SCR Aktivität: MnO_x/TiO₂, CuO_x/Al₂O₃, CuO_x/AC
- NH₃-TPD-, NO_x-TPD-, DRIFT-Untersuchungen
- Zusammenfassung
- Ausblick

NO_x berechnet als NO₂ BRD, 2010, Gesamt = 2470 kt

90 % der Emissionen als NO

Brennstoff NO: aus organischen N-haltigen Verbindungen und Luftsauerstoff Thermisches NO: bei hoher O₂-Konz. und > 1000°C aus Luftstickstoff http://www.umweltbundesamt.de/themen/luft/luftschadstoffe/stickstoffoxide (25.07.2015; 9.30)

Forschungsthema

Institut für Technische Chemie, Universität Leipzig

Ziel:

Entwicklung von maßgeschneiderten Niedertemperatur-Katalysatorsystemen, die in Anwesenheit von NH_3 zu einer quantitativen Umsetzung von NO_x aus Abgasen führen.

Diese sollen im Bereich < 200 °C und bei Gasfeuchten bis ca. 25 Vol.-% aktiv sein.

Parametervergleich der konventionellen NH₃-SCR und zu entwickelnder Niedertemperatur (NT-)NH₃-SCR

Prozessparameter	Stand konventionell	Projektgegenstand
Temperatur / °C	280 – 380	< 200
Trägermaterial	TiO ₂	Aktivkohle, TiO ₂ , Al ₂ O ₃ Zeolithe
Aktive Komponente	$V_2O_5 + MoO_3 (+WO_3)$	MnO _x / CuO _x + MgO
Oberflächenbehandlung	Nein	Hydrophobisierung durch (Me) _n -Si bzw. Modifizierung von Aktivkohle
Ausführung	Monolith	Partikel: Staub / Pellets Applikation als Monolith möglich

AIF-Antrag FV 508, 31.03. 2014, Seite 2

Arbeitsschwerpunkte und Strukturplan

Projektplanung - Arbeits- und Zeitplan

DeNO_x: Stand der Technik

SNCR Verfahren

SCR Verfahren Selektive nicht-katalytische Reduktion 850 – 1100 °C

Selektive katalytische Reduktion 300 – 450 ° C

Kombi-Verfahren Verbindung der SNCR- und SCR-Verfahren z. B. ERC-Verfahren

Konventioneller SCR-Katalysator: $V_2O_5/MoO_3/TiO_2$

Kann konventioneller NH₃-SCR-

Katalysator für die NT-NH₃-SCR-

angepasst werden?

Reduktionsmittel: NH₃ oder "Carbamin 5722"

http://www.erc-online.de/ (25.07.2015, 09.00)

Leider nein!

Mechanismus der NH₃-SCR-Reaktion an V₂O₅/WO₂/TiO₂

J. A. Dumesic, Y. Chen, H. Topsoe, T. Slabiak, J. Catal. 163 (1996) 409.

"Fast-SCR" als Summe der verschiedenen Teilreaktionen

Q. Sun, Z.-X. Gao, B. Wen, W. M. H. Sachtler, Catal. Lett., 78 (2002) 1.

C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, M. Weibel, B. Krutsch, Appl. Catal. B, 70 (2007) 80.

C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, T. Burkhardt, M. Weibel, Chem. Eng. Science 62 (2007) 5001.

A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, M. Weibel, J. Catal. 256 (2008) 312.

Stand der Forschung zu "NT-NH₃-SCR"

DeNO_x/-NH₃-SCR-Aktivitäten von Übergangsmetalloxiden

Begrenzte Angaben zur Bildung von Nebenprodukten, Dauerstabilität und Vergiftung durch Wasserdampf bzw. SO_x

Y. Zheng, A. D. Jensen, J. E. Johnsson, J. R. Thogersen, Appl. Catal. B 83 (2008) 186.

J. Li, H. Chang, H. Chang, L. Ma, J. Hao, R. T. Yang, *Catal. Today* 175 (2011) 147.

B. Thirupathi, P. G. Smirniotis, *J. Catal.* 288 (2012) 74.

Bekannte Folgen während NH₃-SCR unter 200°C am konventionellen $V_2O_5/MoO_3/TiO_2$ -Katalysator

- Unvollständige Entstickung (X_{NOx} < 50%)
 - begrenzte Oxidation von NO zu NO₂ (limitierender Schritt)
- "Verstärkte" Adsorption von NO₂, Wasser und SO_x
 - Ausbildung von Metallsulfaten
 - Hydratisierung der Oberfläche (Inhibierungseffekt)
- Sekundäre Ausbildung von adsorbierten Säuren: HNO_x und H₂SO_x
 - Dealuminierung bzw. Gerüst-Erosion
 - Korrosion und Verstopfung durch Ammoniumsulfate

- U. Deka, I. Lezcano-Gonzalez, S. J. Warrender, A. Lorena Picone, P. A. Wright, B. M. Eckhuysen,
- A. M. Beale, Microporous Mesoporous Mater. 166 (2013) 144

Y. Zheng, A. D. Jensen, J. E. Johnsson, J. R. Thogersen, Appl. Catal. B 83 (2008) 186.

M. Iwasaki, H. Shinjoh, Appl. Catal. A: 390 (2010) 71.

A. Grossale, I. Nova, E. Tronconi, J. Catal. 265 (2009) 141.

Potentielle Katalysatorgifte bei DeNO_x-SCR bei Temperaturen unter 200°C

"niedertemperatur" Gifte: NO₂ (HNO₃), Wasserdampf

Metalloxide + NO + $O_2 \rightarrow$ Metallnitrate

Eigene Ergebnisse

CuO_x- und MnO_x-haltige Katalysatoren

Träger

Alumina (γ-Al₂O₃): CRI (Leuna) und Alfa Aesar, jeweils Pellets

Titanoxid (TiO₂): P-25 (Degussa/Evonik) und Hombikat UV100 und 8602 (Sachtleben Chemie GmbH)

Aktivkohle: ADSOR-TECH (Blücher= B) und GRYFSCAND (PI)

Excess Solution Imprägnierung (nach Shimizu*)

- mit wässrigen Lösungen von Cu- bzw. Mn-Nitraten und -Acetaten
- Massenanteil: 17 Ma.-%
- 90 min bei 50 °C (Rührer oder Ultraschallbad)
- 14 h Trocknung bei 120 °C
- Calzinierung: 6 h bei 550 °C unter Luft oder 4 h bei 450 °C unter N₂ (für AC)

* K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Appl. Catal. B 30 (2001) 151.

Verwendete NH₃-SCR-Apparatur

Prozess-Grenzbedingungen und -Analytik

- Festbett-Flow-Reaktor (Quarzglas, d_{in}= 6 mm)
- Katalysatormenge: 50 300 mg
- Partikelgröße: 100 300 μm
- **Temperatur:** 120 800 °C
- Total-Gasflow: 300 ml min⁻¹
- **GHSV:** $\leq 70.000 \text{ h}^{-1}$
- Wasserdampf: $\leq 35 \text{ Vol.-\%}$
- Edukte: \leq 2000 ppm NO (oder NO₂), \leq 1000 ppm NH₃, \leq 25 Vol.-% O₂

Analytik von Prozess-Gas

- NDIR (URAS-10E, Hartmann & Braun/ABB) (NO, N₂O, CO₂, max. 2000 ppm, mit NO₂/NO Konverter)
- NO_x: Chemiluminiszenz Detektor (CLD 70S, Ecophysics) (mit NO₂ und Amin-Konverter)
- **MS (Quadropol)**, Omi-Star GSD 301 (N₂, NO_x, NH_x, CO_x, HNC, HNCO, SO_x, H₂O)

Texturelle und physico-chemische Eigenschaften der untersuchten MnO_x-haltigen Katalysatoren

	A _{BET} ∕ m² g⁻¹	GPV / cm ³ g ⁻¹	Mn / Ma%	Mn-Dichte/ mg cm ⁻²	Azidität / μmol g⁻¹
TiO ₂ -P-25	32	0,16			88
20/TiO ₂ -P-25	35	0,22	22	2,60	46
TiO ₂ -HK UV100	91	0,33			273
17Mn/TiO ₂ -HK-UV100	92	0,31	17	1,85	113
TiO ₂ HK 8602 SL	83				264
17Mn/TiO ₂ HK 8602 SL	75	0,28	17	2,30	84
γ -Al ₂ O ₃	222	0,59			90
17Mn/γ-Al ₂ O ₃	156	0,43	24	1,57	60

NH₃-SCR-Aktivität von MnO_x-haltigen Katalysatoren auf Basis von TiO₂ und γ-Al₂O₃

Mn-Gehalt: 17 Ma.-% (für Titanoxid), 22 Ma.-% (für Alumina) 500 ppm NO, 575 ppm NH₃, 4 % O₂, Trocken-Flow: 120 ml min⁻¹ GHSV: 18.000 h⁻¹

- 75-100 % NO-Umsätze im Temperaturbereich von 150 bis 200 °C
- hohe (> 30 %) Selektivität für N₂O-Bildung
- evtl. wird NH₃ zu N₂O oxidiert
- höherer MnO_x-Gehalt (> 17 mas.-%) verursacht verstärkte N₂O-Bildung

SCR-Aktivität von 17Cu/Al₂O₃ Katalysatoren hergestellt nach verschiedenen Imprägnierungsmethoden

Konv. Imprägnierung von Pulver (0,1 - 0,3 mm) mit Cu-Nitrat RV: Vakuum-Imprägnierung von Pellets (1,5 x 8,0 mm) mit Cu-Nitrat Konv. Imprägnierung von Pulver (0,1 - 0,3 mm) mit Cu-Acetat

Cu-Acetat als Precursor führt zu geringerer Aktivität und höherer N₂O-Selektivität

Vergleich NH₃-SCR-Aktivitäten von CuO_x auf verschiedenen Aktivkohlen

- NO-Umsatz bei 200 °C liegt bei ca. 70 85 %
- Vergleichbare NO-Umsätze auf synthetischer und konventioneller AC
- Relativ niedrige Selektivität für N₂O-Bildung (< 10 %)

CO₂-Bildung während SCR an 17Cu/AC-Katalysatoren

mit Cu beladene Aktivkohle beginnt bei über 250°C merklich zu oxidieren

evtl. Abbrennung von "shell"-Schicht über 250°C!

Vergleich SCR-Aktivität von Mn- und Cu-haltigen Katalysatoren (bei 200°C, trockener Gasfluss)

Alumina basierte Katalysatoren zeigen 3-4 mal niedrigere N₂O-Selekitvitäten

NH_3 -SCR von NO_x an MnO_x (FeO_y)Sr(La)-Aluminaten

M. V. Bukhtiyarova , A. S. Aleksandra, L. M. Lyudmila, G. S. Litvak, V. A. Rogov, V. V. Kaichev, E. M. Slavinskaya, P. A. Kuzentsov, I. A. Polukhina, *Appl. Catal. A* 357 (2009) 193.

UNIVERSITÄT LEIPZIG

Katalysator-Charakterisierung:

NH₃-TPD NO_x-TPD DRIFT

Aziditäts-Bestimmung durch NH₃-TPD: Desorption von Ammoniak und NO_x-Bildung

 ca. 3/4 des adsorbierten Ammoniak wird durch aktiven Gerüstsauerstoff (MnO_x) zu N₂O und NO oxidiert

Azidität von MnO_x-haltigen Katalysatoren

- Dotierung von Alumina und Titanoxid mit MnO_x verringert die Azidität?

Katalysator-Charakterisierung:

NH₃-TPD NO_x-TPD DRIFT

NO_x-TPD-Apparatur

Temperatur-Zeit-Profile

NO_x-TPD-Profile für 17Mn/TiO₂ HK UV100

250 NO_{x} adsorptions capacity / $\mu\text{mol/g}$ NO NO₂ 200 150 100 50 0 NO + 0, NO NO₂ + O₂ NO₂ 200 mg Katalysator Sättigung bei 90 °C • 1000 ppm NO bzw. NO₂, 5 % O₂ • TPD: 90 – 530 °C, Heizrate: 7 K min-1

NO_x-Adsorptionskapazität

 Katalysator sehr aktiv zur NO-Oxidation und NO₂-Speicherung

NO_x Adsorptionskapazitäten von MnO_x-haltigen Katalysatoren

- 200 mg Katalysator
 Sättigung bei 90 °C
 1000 ppm NO bzw.
 NO₂, 5 % O₂
 TPD: 90 530 °C,
 - Heizrate: 7 K min⁻¹

- Beladung mit Mn-Oxid begünstigt die NO_x-Speicherung
- MnO_x trägt zur Oxidation von NO zu NO₂ bei

Selektivität zur NO₂-Bildung ermittelt durch NO_x-TPD

NO_x-TPD Profile für Al₂O₃-basierte Katalysatoren

- Beladung mit 17 Ma.-% Cu erhöht (ca. 1,8-fach) die NO_x-Adsorptionsaufnahme
- T_{max} Verschiebung um ca. 30-80 K zu niedrigeren Temperaturen
- Cu-Nitrate sind thermisch labiler als Ti-Nitrate
- CuO_x beschleunigt die Oxidation von NO zu NO₂

Katalysator-Charakterisierung:

NH₃-TPD NO_x-TPD DRIFTS

DRIFTS-Spektren von 17Mn/TiO₂-HK UV100 in Gegenwart von NO und O₂ (Temp. 100 – 500 °C)

- Sättigung bei 35 °C • 1000 ppm NO, 5 % O₂ **1376** 1356 5.0 dry 4.5 35c* 100c* 1393 4.0 200c* 300c* 3.5 Absorbance / a.u. 400c* 3.0 415 500c* 1253 2.5 1553 2.0 1488 1607 1.5 1.0 0.5 0.0 1400 1600 1200 1800 Wavenumber/ cm-1
- 250 ads nitrat species (NO, & NO, 1415 cm mono- and bi-dentate 1393 cm Realative Intensity Fleak area 200 1376 cm 1356 cm 100 50 200 100 300 400 500 Temperature / °C 120 ads. nitrit species (NO) 1607 cm⁻ Realative Intensity Peak area mono- and bi-dentate 1553 cm 1488 cm 1291 cm 1253 cm⁻¹ 0 500 100 200 300 400 Temperature / °C

- starke Adsorption von NO_x unter 200 °C
- NO wird zum NO₂ oxidiert
- adsorbierte NO₂-Spezien sind bis 400 °C stabil

DRIFTS-Spektren von $17Cu/Al_2O_3$ -CRI Gegenwart von NO und O_2 (Temp. 100 – 500 °C)

geringere Ausbildung von adsorbierten Nitrat-Spezies

Diskussion zu mechanistischen Aspekten zur N₂O- und NO₂-Bildung

N₂O-Konzentration-Temperatur-Profile bei NH₃-SCR in Gegenwart von Mn/TiO₂ Katalysatoren

- Zerfall von "N₂O-Prekursor" und Desorption von N₂O bei 200 300 °C

Unerwünschte N₂O-Bildung bei NH₃-SCR

Brutto-Reaktion (nach Tronconi et al.)

Thermische (> 300 °C) und katalytische Oxidation von Ammoniak

 $4 \text{ NH}_3 + 4 \text{ O}_2 \qquad \rightarrow 2 \text{ N}_2 \text{O} + 6 \text{ H}_2 \text{O}$

Bildung von ads. HNO3 und thermischer Zerfall von Ammoniumnitrat

$2 \text{ NO}_2 + \text{H}_2\text{O}$	\rightarrow 2 HNO ₃ (stark adsorbiert bei < 200°C)
$HNO_3 + NH_3$	$\rightarrow \text{NH}_4 \text{NO}_3 \rightarrow 2 \text{N}_2 \text{O} + 2 \text{H}_2 \text{O}$

E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, J. Catal. 245 (2007) 1.

P. Balle, SCR von NO_x mittels NH₃ an Fe-modifizierten BEA-Zeolithen; Dissertation,

Thermischer Zerfall von Nitraten und Sulfaten

	T / °C		
	Nitrat ^{a)}	Sulfat ^{b)}	
Cu	220 – 295	600	
Mn	200 – 220	750	
Fe	155 – 170	755	
NH ₄	170 – 175 ^{c, d)}	235	
NH ₄ NO ₂	71 ^{e)}		

a-e): Temperaturfenster der größten Geschwindigkeit der NO₂- und SO₃-Bildung, ermittelt durch TG/DTG-MS-Analyse.

a) K. Wieczorek-Ciurowa, A. J. Kozak, J. Therm. Anal. Calorim. 58 (1999) 647.

b) T. Cseri, S. Bekassy, G. Kenessy, G. Liptay, F. Figueras, *Thermochim. Acta* 288 (1996) 137.

c) R. V. Siriwandene, J. A. Poston Jr., E. P. Fisher, M.-S. Shen, A.L. Miltz, Appl. Surf. Sci. 152 (1999) 219.

d) K. R. Brower, J. C. Oxley, M. Tewari, J. Phys. Chem. 93 (1989) 4029.

e) V. H. Veley, J. Chem. Soc., Faraday Trans. 83 (1903) 734.

TG/DTA- und NO₂-Profile des thermischen Zerfalls von Mn(NO₃)₂·3H₂O (Bulk und auf γ -Al₂O₃)

B. Małecka, A. Lacz, E. Drozdz, A. Malecki, J. Therm. Anal. Calorim. 119 (2015) 1053.

Vergleich der Zersetzungstemperaturen von d-Metall-Nitraten (Bulk und auf γ - Al₂O₃)

Frage: Kann die Speicherung und Bildung von Nitraten (und Sulfaten) während der SCR durch die Auswahl des Tägermaterials beeinflusst werden?

B. Małecka, A. Lacz, E. Drozdz, A. Malecki, J. Therm. Anal. Calorim. 119 (2015) 1053.

N₂O-Bildung während SCR von NO_x mit NH₃ an Cu-haltigen Zeolith-Katalysatoren

- in kleineren Poren von Cu-SAPO-34 wird weniger N₂O gebildet als in größeren Poren von Cu-Beta
- N₂O bildet sich durch die Zersetzung von NH₄NO₃
- NH₄NO₃ ist stabiler an Cu-SAPO-34 als an Cu-BEA

H. Y. Chen, Z. Wei, M. Kollar, F. Gao, Y. Wang, J. Szanyi, C. H. F. Peden, J. Catal. 329 (2015) 490.

Zusammenfassung

- Cu- und Mn-Oxide (mit 17 Ma.-% Metallgehalt) auf TiO₂, Al₂O₃ und AC als Träger zeichnen sich durch unterschiedliche NH₃-SCR Aktivität im Bereich 150-250 °C aus.
- Mn/TiO₂ Katalysatoren bei 200 °C zeigen einen NO-Umsatz von 85-95 % und sehr hohe (25-35 %) Selektivität für die N₂O-Bildung.
- DRIFTS-, NO₂-und NH₃-TPD-Untersuchungen sprechen dafür, dass eine hohe N₂O-Selektivität von Mn/TiO₂-Katalysatoren durch eine ausgeprägte Aktivität von Ti- und Mn-Oxiden für die Oxidation von NO zu NO₂ und zur NO₂-Speicherung von NO verursacht werden.
- CuO_x auf Al₂O₃ und AC zeigt im Vergleich zu MnO_x/TiO₂ bei 150-200 °C geringere (< 6 %) bzw. "akzeptable" Selekivität für die N₂O-Bildung.
- Synthetische (Blücher) und konventionelle (Holz) Aktivkohle eignen sich als Katalysatorträger für Cu-Oxide. Die Verbrennung der AC-Träger setzt erst oberhalb von 300 °C ein.

Ausblick

- Variation des Gehaltes an aktiver Komponente (N₂O-Selektivität, Kostensenkung)
- Dotierung mit anderen Metallen, binäre Mischoxidsysteme (Mg, Cu, Ni, Co, Fe; z.B. Mn + Cu)
- Einfluss des NO : NH₃ Verhältnisses
- Einfluss von Kontaktzeit (GHSV)
- Einfluss von Vergiftung (H₂O, SO₂, H₂O + SO₂) auf Aktivität und Erhöhung der Feuchte-Resistenz (Hydrophobisierung)

Bericht der Forschungsstelle IUTA

Aufgabenstellung IUTA

- 1. Entwicklung maßgeschneiderter Katalysatoren und Laboruntersuchungen zur Umsetzung von NO_x bei Anwesenheit von NH_3 und hoher Gasfeuchte bei niedrigen Temperaturen.
- 2. Aufbau und Betrieb einer Laboranlage zum messtechnischen Nachweis der Leistungsfähigkeit.
- 3. Optimierung des verfahrenstechnischen Konzepts auf Basis der Versuchsergebnisse
 - Leistungsfähigkeit / NOx-Abscheidegrad
 Temperatur, Feuchte, weitere Schadstoffe
 - Verhalten des Materials: im Flugstrom, auf dem Filter beim Abreinigen, beim Transport
 - Einfluss von Rezirkulat
 - Möglichkeiten einer zyklischen Regenerierung

Versuchsstand: Konzept

Temperierbarer Versuchsstand

25

0

HCI

Feuchte (Vol. %)

Filterprüfstand nach DIN 3926

Filterprüfstand nach DIN 3926 bis 250 °C

+ Staubsammelbehälter

- + zusätzliche Schadgasdosierung
- + zusätzliche Messstutzen
- + Aktivkohleschüttung für Schadgase

Bestellung und Aufbau eines Laborraums in Halle 5

Lieferung des Prüfstandes in KW 43 (Mitte Oktober)

Ausrüstung des Prüfstandes mit der benötigten Messtechnik und Einfahren der Anlage

Untersuchungen der am TCI entwickelten katalytischen Adsorbentien

UNIVERSITÄT LEIPZIG

Besten Dank für Ihre Aufmerksamkeit

I. Sitzung des Projektbegleitenden Ausschusses

Roger Gläser Marcus Kasprick Wladimir Suprun

Institut für Technische Chemie Universität Leipzig

SEM-BSE 17Cu/Al₂O₃

SEM-BSE 17Cu/Al₂O₃

SEM-BSE 17Cu/AC Blücher

SEM-BSE 17Cu/AC Blücher

