Bundesministerium für Wirtschaft und Technologie

Gefördert durch:

UNIVERSITÄT LEIPZIG

Entwicklung eines energieeffizienten Verfahrens zur katalytischen Niedertemperatur-Entfernung von NO_x aus industriellen Abgasen

3. Sitzung des Projektbegleitenden Ausschusses des IGF-Vorhabens Nr. 18515N

Marcus Kasprick Waldimir Suprun Roger Gläser

Institut für Technische Chemie, Universität Leipzig

06. Dezember 2016 Duisburg

Inhalt

- Status des Projektes
- Stand der Technik
- Zusammenfassung 2. PBA-Treffen
- Experimentelles
- Ausgewählte Ergebnisse
- Zusammenfassung
- Ausblick

Status des Projektes

Projektplanung - Arbeits- und Zeitplan

Stand der Technik

UNIVERSITÄT LEIPZIG

N₂O-Bildung während NH₃-SCR an V₂O₅/TiO₂

Links: Abhängigkeit von der V₂O₅-Beladung bei verschiedenen Temperaturen
 Rechts: Abhängigkeit von der Reaktionstemperatur
 1000 ppm NO, 1000 ppm NH₃, 3 vol.-% O₂

Erhöhung der Temperatur und V₂O₅-Beladung fördern die Lachgas-Bildung

J. A. Martin, M. Yates, P. Avila, S. Suarez, J. Blanco Appl. Catal. B: Environ. 70 (2007) 330.

Einfluss des NO₂/NO_x-Verhältnisses auf die N₂O-Bildung während NH₃-SCR

N₂O-Bildung kann mit Zersetzung von Ammoniumnitrat erklärt werden

- NO₂ fördert die Bildung von Lachgas
- Die N₂O-Bildung ist an Fe/ZSM-5 mehr ausgeprägt als am Cu/ZSM-5

M. Colombo, I. Nova, E. Tronconi, Catal. Today 151 (2010) 223.

BASF-Katalysatoren für N₂O-Zersetzung deN₂O-Technologie: N₂O \rightarrow N₂ + $\frac{1}{2}$ O₂

Catalyst	Shape	Size, mm	Density, kg/L	Min. Operating Temperature, °C	Max. Operating Temperature, °C
O3-81	Star Extrudates	6 (diameter)	0.9	450	>800
O3-85	Star Extrudates	3, 6 (diameter)	0.9–1.0	750	>900
O3-88	Honeycomb (Extrudates)	50–200 (length) 70 (outer diameter)	0.9	750	>900

Die Katalysatoren werden eingesetzt in:

- Salpetersäureanlagen
- Adipinsäureanlagen
- Caprolactamanlagen

deN_2O -Technologie beseitigt N_2O -Emission bis zu 100%, benötigt jedoch sehr hohe Reaktionstemperaturen über 700°C

http://www.catalysts.basf.com/p02/USWeb-Internet/catalysts/en_GB/function/conversions:/publish/content/microsites/catalysts/prods-inds/process-catalysts/BF-9834_US_N2O_and_DeNOX_Technote.pdf (30.11.2016)

UNIVERSITÄT LEIPZIG

N₂O-Bildung bei der NH₃-SCR

- a) Multiple Bildungsmechanismen:
- Oxidation von Ammoniak

 $NH_{3(ads)} \rightarrow N_2O + NO + H_2O$

Rekombination von adsorbiertem NO_(s)

 $2 \text{ NO}_{(s)} \rightarrow \text{ N}_2\text{O} + [O]_{(s)}$

- Zerfall von $NH_4NO_{3(ads)}$ (oberhalb von T_m : 169°C) $NH_4NO_{3(s)} \rightarrow N_2O + 2H_2O$
 - $NH_4NO_{3(s)} \rightarrow N_2O + 2H_{2(g)} + [O]_{(s)}$
- Zerfall von ads. HNO 2 HNO_(s) \rightarrow N₂O + H₂O

b) wird beeinflusst durch:

- O2-Konz, Gehalt und OF-Dichte von Metalloxiden
- NO/NO₂-Verhältnis
- NO_x-Adsorptionsfähigkeit und Stabilität von ads. NO_x-Spezies
- Oxidationsaktivität von ÜMO ("oxidation power")
- Temperatur-Fenster
- Typ und Textureigenschaften von Katalysator-Träger
- Form-Selektivität: am Cu/SAPO-34, Cu/ZSMA-5 minimale N₂O-Bildung
- Präsenz von Wasser und SO₂: inhibierende Wirkung
- Mn-haltige Katalysatoren zeichnen sich durch sehr hohe N₂O-Ausbeute aus

N.O

Cataly

NH₃

NH₄NO₂

N₂O

HNO

Eigene Ergebnisse

Experimentelles

Zusammenfassung 2. PBA-Treffen Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

Katalysatorpräparation

Träger

Alumina (γ**-Al**₂**O**₃): CRI (Leuna) und Alfa Aesar

Titanoxid (TiO₂): P-25 (Evonik), Hombikat UV100 und 8602 (Huntsman)

Mischoxide: SiO₂-TiO₂ (Huntsman), SiO₂-Al₂O₃ (CRI), TS-1 (Evonik)

Aktivkohle: PBS-AC (Blücher), konv.-AC (Gryfskand)

Nass-Imprägnierung

- mit wässrigen Lösungen von Fe-, Cu- bzw. Mn-Nitraten oder -Acetaten
- Massenanteil: 12 24 Ma.-%
- Trocknung bei 60 °C unter Vakuum oder 75 °C unter Luft
- Calzinierung: 5 h bei 350 500 °C unter Luft oder N₂

Verwendete NH₃-SCR-Apparatur

* nur für Vergiftungsversuche

Eigene Ergebnisse

Experimentelles

Zusammenfassung 2. PBA-Treffen

Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

Ausblick (2. PBA, Juli 2016)

- Variation des Gehaltes an aktiver Komponente (Inhibierung der N₂O-Bildung)
- binäre oder ternäre Mischoxidsysteme mit anderen Metallen (Mg, Cu, Ni, Co, Fe; z.B. Mn + Cu)
- Einfluss der Vergiftung (H₂O, SO₂, H₂O + SO₂) auf Aktivität und Erhöhung der "Feuchte-Resistenz" (Hydrophobisierung)

Eigene Ergebnisse

Experimentelles Zusammenfassung 2. PBA-Treffen Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

Vergleich SCR-Aktivität von Mn- und Cu-haltigen Katalysatoren (bei 200°C, trockener Gasfluss)

Alumina basierte Katalysatoren zeigen 3-4 mal niedrigere N₂O-Selekitvitäten

Mn-Katalysator, Trägerbeladung mit "Fremdoxid"

- Signifikant mehr N₂O-Bildung mit TiO₂ als mit Al₂O₃ (TiO₂-Trägermaterial fordert Bildung von Lachgas)
- Beladung von Trägermaterial mit ca. 2 mol-% (4 mas.-%) SiO₂, TiO₂ oder Al₂O₃ unterdrückt die N₂O-Bildung signifikant

4 vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h^{-1} , n(Mn)/n(M) = 0.3 TiO_2 : Hombikat UV100 (Huntsman), Al₂O₃: γ -Alumina Pellets (Alfa Aesar)

NH₃-SCR-Aktivität von Cu/Al₂O₃-SiO₂ und Mn/TiO₂-SiO₂

 vollständiger NO-Umsatz bei 150-240 °C, breites Temperaturfenster für Mn/TiO₂-SiO₂Katalysator

• max. N_2O -Ausbeute ca. 7 % (250 °C)

 geringere Aktivität bei 150-240 °C, schmales Temperaturfenster und 2 mal niedrigere N₂O-Ausbeute an Cu/Al₂O₃-SiO₂ Katalysator

Mn/TiO₂-SiO₂: 17 mas.-% Mn, 4 mas.-% SiO₂ (HK, CRI Y45857) Cu/Al₂O₃-SiO₂: 17 mas.-% Mn, 20 mas.-% SiO₂ (CRI Y45858)

⁴ vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Eigene Ergebnisse

Experimentelles Zusammenfassung 2. PBA-Treffen Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

Unterschiedliche Übergangsmetalloxide

0,4M/TiO₂ (P-25, Evonik)

- Mn und Cu zeigen hohe NO-Umsätze bei 170-220 °C
- Mn weißt extrem hohe Aktivität für N₂O-Bildung auf (170-220 °C)
- Bildung von N₂O an Cu-, Fe-, Cound Ni-Oxidhaltigen Kat. um ca. 5 bis 10 mal niedriger als MnO_x

Mn >> Cu > Co > Ni > Fe

⁴ vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹, n(M)/n(Ti) = 0.4 TiO₂: P-25 (Evonik)

Anwendung von binären Mischoxiden

MacMillan et al. Chem. Sci. 3(3) (2012) 633-658. N.A.S. Amin, J. Molecular Catal. A: Chem. 259 (2006) 61–66. W. Fu, et al. Scientific Reports,doi:10.1038/srep02349 (2013). X. Wang et al., Catalysts 6 (2016) 112. S.S.R. Putluru et al., Appl. Catal. B (2015) 165, 628–635.

SCR-Aktivität von binären Oxiden

Beobachtete Effekte für die SCR-Aktivität (NO-Umsatz)

- Mn-Cu: CuO_x setzt die SCR-Aktivität von Mn/TiO₂ herab
- Fe-Cu: Synergieeffekt nur bei 0.25Fe, sonst: zunehmender Fe-Anteil setz Aktivität herab
- Mn-Fe: Synergieeffekt bei 0.75Fe

4 vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹, n(M)/n(Ti) = 0.2 TiO₂: Hombikat 8602 (Huntsman)

UNIVERSITÄT LEIPZIG

SCR-Aktivität von binären Oxiden

 $(n_{Metall1} + n_{Metall2})/n_{Ti} = 0.2$ (konstant)

TiO₂-Träger (HK 8602)

Beobachtete Effekte für die N₂O-Bildung

Mn-Cu: Synergie Effekt nur bei 0.5Cu, sonst: Cu setzt die N₂O Bildung herab

Fe-Cu: Fe unterdrückt die N₂O Bildung im ganzen Bereich (von 0.25 bis 0.75Fe)

Mn-Fe: Fe unterdrückt die N_2O Bildung im ganzen Bereich (von 0.25 bis 0.75Fe)

4 vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹, n(M)/n(Ti) = 0.2 TiO₂: Hombikat 8602 (Huntsman)

Eigene Ergebnisse

Experimentelles Zusammenfassung 2. PBA-Treffen Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

Einfluss von H₂O und SO₂ auf SCR-Aktivität

4,5 % H₂O 50 ppm SO₂

- H₂O bewirkt starke zum Teil reversible Desaktivierung des Cu-haltigen Katalysators
- NO-Umsatz des Mn-haltigen Katalysators wird durch H₂O kaum beeinflusst
- irreversible Desaktivierung durch SO₂

⁴ vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Einfluss von H₂O und SO₂ auf N₂O-Bildung

200°C

- N₂O-Ausbeute ist am Mn/TiO₂-SiO₂ um ca. 2 mal größer als am Cu/Al₂O₃-SiO₂
- H₂O und SO₂ unterdrücken die Bildung von Lachgas

4 Vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Bewertungskriterien zur Vergiftung mit Wasserdampf

Versuche bei 200 °C mit transienter Zufuhr von 4.5 Vol.-% Wasserdampf

• Desaktivierungsgrad / %
$$\Delta X_{\text{NO}} = \frac{X_{\text{NO}}^{\text{dry}} - X_{\text{NO}}^{\text{wet}}}{X_{\text{NO}}^{\text{dry}}} \cdot 100$$

• Regenerierungsgrad / % $RG = \frac{X_{\text{NO}}^{\text{post.dry}} - X_{\text{NO}}^{\text{wet}}}{X_{\text{NO}}^{\text{wet}}} \cdot 100$

Einfluss von H₂O und SO₂ auf den NO-Umsatz an Mn-Cu-Fe-Mischoxid-haltigen Katalysatoren

200 °C, 4 vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(M)/n(Ti) = 0,2, TiO₂: Hombikat 8602 (Huntsman)

Eigene Ergebnisse

Experimentelles Zusammenfassung 2. PBA-Treffen Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

Idee der Oberflächenmodifizierung

Silylierung: Oberflächenmodifizierung mit Organosilica-Gruppen

thermische Stabilität?

Aktivitätsvergeilch von Cu- und Mn-haltigen Katalysatoren nach der Silylierung mit HMDS

- Trimethylsilylierung bewirkt ein starke Minderung der Aktivität bei 120-250 °C
- Bedeckung von aktiven Zentren evtl. sterische Effekte der Me₃Si-Gruppen

⁴ Vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Charakterisierung von Hydrophobierten Cu/Al₂O₃-SiO₂ Katalysatoren

nicht konkurrierende Adsorption von Wasser und Toluol bei 27°C

- Hydrophobierung mit Me₃-Si bzw. Ph-Si bewirkt starke Minderung der Wasseradsorption und begünstig die Toluol-Adsorption
- Hydrophobierungseffekt von Ph-Si ist stärke ausgeprägt als von Me₃-Si

SCR-Profiele für Mn/Ti₂O-SiO₂-TMS in Abwesenheit von Wasser

- bereits ab 200 °C beginnt der oxidative Abbau von Me₃Si-Gruppen
- Form von CO₂-Profilen spricht f
 ür eine stufenweise CO₂ Entwicklung bzw. Desoption

⁴ Vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Einfluss von Wasser auf die SCR Aktivität von Cu/Al₂O₃-SiO₂-Silylierten Katalysatoren

 $T = 200^{\circ}C$

- Me₃-Si und Ph-Si-Gruppen erhöhen Stabilität gegen Wasservergiftung (vgl. Desaktivierungsgrad)
- Organo-Silyl-Gruppen verbessern die Regenerierbarkeit (vgl. Regenerierungsgrad)
- aber unterdrücken drastisch die SCR-Aktivität (vgl. X_{NO})

Eigene Ergebnisse

Experimentelles Zusammenfassung 2. PBA-Treffen Trägermaterial Aktive Komponente Einfluss von H₂O und SO₂ Oberflächenmodifikation Aktivkohlebasierte Katalysatoren

SCR-Aktivität von CuO_x-haltigen Katalysatoren beladen auf Aktivkohle

PBS-AC Polymerbasierte (Blücher) $A_{BET} = 1410 \text{ m}^2 \text{ g}^{-1}, 17 \text{ mas.}$ -% Cu AC: konventionelle AC (Gryfscand) $A_{BFT} = 830 \text{ m}^2 \text{ g}^{-1}$ 100 75 -17Cu/AC-RF $X_{NO}/ \%$ 17Cu/PBS-AC 50 -3Cu/AC-HNO 17Cu/AC-RV 25 17Cu/AC-US-Acetat 17Cu/AC-US-Nitrat 0 100 150 200 250 300 350 400 Temperatur/°C

- AC und PBS-AC zeigen SCR-Aktivität nur oberhalb von 250 °C
- CuO_x-Katalysatoren (17 mas.-% Cu) beladen auf AC und PBS-AC besitzen vergleichbare Aktivität
- Cu-Beladung erhöht die SCR Aktivität besonders in NT-Bereich
- Imprägnierungsmethode (RF, RV, US und Cu-Precursorsalz) beeinflusst die Aktivität
- Beladung von AC mit Cu-Oxiden f
 ördert die N₂O-Bildung (Y(N₂O) ca. 4-8% bei 200 °C)
- beschleunigt destruktiven Abbau von Aktivkohle (besonders oberhalb von 300 °C)

Vergiftung von 17Cu/PBS-AC Katalysator durch Wasser bei 220°C

reversible Vergiftung mit Wasser

- vollständige und schnelle Regenerierung nach ca.
 5 min
- Konkurrenzadsorption von Wasser und Edukten:
 c(H₂O) >> c(NO), c(NH₃) (vgl. 4.5 vol.-% und 500 ppm)

Vergiftung von 17Cu/PBS-AC Katalysator durch SO₂ und H₂O bei 220°C

- irreversible Vergiftung mit SO₂ (nur geringfügige Regenerierung nach 20 min)
- zusammenwirkender Effekt bei simultaner Vergiftung mit SO₂ in Gegenwart von Wasserdampf
- keine vollständige Regenerierung nach simultaner Vergiftung

Wasser-Vergiftung von CuO_x haltigen Katalysatoren beladenen auf Alumina und Aktivkohle

- AC und PBS-AC basierte CuO_x Katalysatoren zeigen mehr Wasserresistenz als Al₂O₃-basierte
- 17 Cu/PBS-AC -Katalysator besitz nur um ca. 1% höhere Resistenz als 17 Cu/AC
- Dotierung von Cu/Al₂O₂ mit SiO₂ nur um ca. 6% erhöht die H₂O-Wasserresistenz
- Dotierung von Cu/Al₂O₂ mit MgO setzt die Wasserresistenz herab

UNIVERSITÄT LEIPZIG

Zusammenfassung und Ausblick

Zusammenfassung

- binäre Mn-, Cu- bzw. Fe-Mischoxid-Systeme haben teilweise höhere SCR-Aktivität bei NT und erhöhen gleichzeitig die N₂O-Bildung
- Zunahme NO-Umsatz besonders im NT-Bereich durch FeO_x und CuO_x Beladung, jedoch gleichzeitige Zunahme der N₂O-Bildung im NT-Bereich mit steigender Temperatur
- N₂O-Bildung f
 ür Mn/TiO₂-basierte Katalysatoren konnte durch Modifikationen reduziert werden
- Beladung von Mn/TiO₂ mit SiO₂ unterdrückt die N₂O-Bildung und stabilisiert SCR-aktive Spezies (Mnⁿ⁺¹) auf Katalysatoroberfläche
- Silylierung mit Me₃Si und PhSi verbessert die Wasserresistenz bzw. Desaktivierungsgrad, verringert jedoch die SCR Aktivität
- SCR Aktivität von Cu-haltiger AC bei 160-180 °C ist um ca. 20-30% niedriger als von Mn/TiO₂-SiO₂ und Mn/Al₂O₂-SiO₂, oberhalb von 250 °C tritt ein destruktiver Abbau von AK-Gerüst auf

Ausblick

- Untersuchung der Mischoxide: MnO_x-CeO_x und MnO_x-CuO_x-CeO_x
- Einfluss von CeO_x-Beladung des Trägermaterials TiO₂-SiO₂ (7%)
- Untersuchungen zu Aktivkohle-basierten Katalysatoren:
 Verschiedene AK als Träger mit CeO_x, MnO_x, FeO_x-Beladung
- Langzeituntersuchungen des Einflusses von SO₂ und Wasserdampf-Vergiftung (synthetische Alterung: hydrothermale Behandlung, Beladung mit Sulfaten/Hydrogensulfaten (NH₄, ÜMO)
- Erhalt der Aktivität vs. Vergiftungs-Resistenz, Regenerierbarkeit Leaching-Stabilität

UNIVERSITÄT LEIPZIG

Danke für Ihre Aufmerksamkeit

3. Sitzung des projektbegleitenden Ausschusses

Marcus Kasprick Wladimir Suprun Roger Gläser

Institut für Technische Chemie Universität Leipzig

