

UNIVERSITÄT LEIPZIG

Entwicklung eines energieeffizienten Verfahrens zur katalytischen Niedertemperatur-Entfernung von NO_x aus industriellen Abgasen

2. Sitzung des Projektbegleitenden Ausschusses des IGF-Vorhabens Nr. 18515N

28. Juni 2016, Duisburg

Marcus Kasprick Waldimir Suprun Roger Gläser

Institut für Technische Chemie, Universität Leipzig

Inhalt

- Vorstellung des Projektes
- Stand der Technik
- Zusammenfassung 1. PBA-Treffen
- Experimentelles
- Ausgewählte Ergebnisse (Highlights)
- Zusammenfassung
- Ausblick

Vorstellung des Projektes

Projektbegleitender Ausschuss

- ADSOR-TECH GmbH, Premnitz
- Blücher GmbH, Erkrath
- CarboTech AC GmbH, Essen
- CRI Catalyst Leuna GmbH, Leuna
- Eproplan GmbH, Stuttgart
- ete.a GmbH, Lich
- GEA Deutschland, Düsseldorf
- Huntsman Pigments and Additives
- LÜHR FILTER GmbH Co. KG, Stadthagen
- M&C TechGroup Germany GmbH, Ratingen
- Nederman Filtration GmbH, Friesenheim
- Palas GmbH, Karlsruhe
- Rheinkalk GmbH, Wülfrath
- Tiede- & Niemann Ingenieurgesellschaft mbH, Hamburg

Drei Aufgabenstellungen des Projekts

1. Entwicklung maßgeschneiderter Katalysatoren und Laboruntersuchungen zur Umsetzung von NO_x in Anwesenheit von NH_3 und hoher Gasfeuchte bei niedrigen Temperaturen (< 200 °C)

UNIVERSITÄT LEIPZIG

2. Aufbau und Betrieb einer Laboranlage zum messtechnischen Nachweis der Leistungsfähigkeit

3. Optimierung des verfahrenstechnischen Konzepts auf Basis der Versuchsergebnisse

Parametervergleich der konventionellen NH₃-SCR und zu entwickelnder Niedertemperatur (NT-)NH₃-SCR

Materialentwicklung	Stand konventionell	Projektgegenstand
Temperatur / °C	280 - 380	< 200
Trägermaterial	TiO ₂	Aktivkohle, TiO ₂ , Al ₂ O ₃ , Mischoxide
Aktive Komponente	$V_2O_5 + MoO_3 + WO_3$	MnO _x , CuO _x , FeO _x , Mischoxide
Oberflächenbehandlung	Nein	Hydrophobierung durch (Me) _n -Si bzw. NO ₂ -Modifizierung für Aktivkohle
Ausführung	Monolith	Partikel: Staub / Pellets Applikation als Monolith möglich

Projektplanung - Arbeits- und Zeitplan

Testung der vorausgewählten Materialien hinsichtlich:

- mechanische Dauerstabiltät
- Abreinigungsverhalten und Handling
- Desaktivierung aufgrund von Feuchte als f(T)
- Desaktivierung aufgrund von Katalysatorgiften als f(T)
- Verbesserung der NO_x-Umsetzung durch nachgeschaltete Behandlung

Stand der Technik

Katalysezyklus für die SCR-Reaktion an V₂O₅/TiO₂

- Untersuchungen zeigen direkten Zusammenhang zwischen NO_x-Umsatz und Brønsted-Säurezentren (BAS)-Konzentration
- komplizierter Zusammenhang zwischen Art der sauren Zentren (LAS bzw. BAS)

N.-Y. Topsøe, Science, 265 (1994) 1217.

N.-Y. Topsøe, J.A. Dumesic, H. Topsøe, J. Catal. 151 (1995) 241.

Mechanismus der "standard"- und "fast"-SCR-Reaktion

$$2 \text{ NH}_3 + 3 \text{ NO} \rightarrow 2.5 \text{ N}_2 + 3 \text{ H}_2\text{O}$$

Reoxidation von V⁴⁺ durch O₂ ("standard")

Reoxidation von V⁴⁺ durch NO₂ ("fast")

Redox-Katalysezyklen:

V⁵⁺=O + NO
$$\leftrightarrow$$
 V⁴⁺-ONO
$$V^{4+}$$
-ONO + NH $_3^{(ads)}$ \rightarrow [NH $_4$ NO $_2$] \rightarrow N $_2$ + H $_2$ O + V⁴⁺-OH

E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, J. Cat. 245 (2007) 1–10.

Multiple Mechanismen zur N₂O-Bildung während der DeNO_x-Reaktion

a) Partielle Oxidation von Ammoniak:

 $NH_3^{(ads)} + [O] \rightarrow N_2O + H_2O$ f = {NH₃-Gehalt, ÜMO-Gehalt, Temp. und Redox-Aktivität von ÜMO ("oxidation power")} ÜMO =
Übergangsmetalloxid,
z.B. Mn, Cu,
Fe, V ...

b) Rekombination von NO^(ads):

 $2 \text{ NO} \rightarrow \text{N}_2\text{O} + [\text{O}]$

f = {ÜMO-Dichte auf OF, Temp., Redox-Aktivität, NO-Ads.-Kapazität, Präsenz von HC und Wasser}

c)

Thermischer/katalytischer Zerfall von NH₄NO₃ (ads):

 $NH_4NO_3^{(ads)} \rightarrow N_2O + H_2O + N_2$ f = { NO_2 -Gehalt, Säure/Base-Eigenschaften, Temp., Redox-Aktivität}

Verringerung der N₂O-Emission

Eine Reduktion der Emission von N_2O , was ein ca. 300-mal größeres Treibhauspotential aufweist als CO_2 , gehört zur Zeit zu einem der wichtigsten Ziele im Umweltschutz und LT-SCR-Technologie.

2014 betrug der Anteil an N₂O von menschenverursachten Treibhausgasen ca. 6 %.

N₂O wird als Ergebnis des mikrobiologischen Abbaus von Dünger im Boden freigesetzt.

A. Adamski, W. Zaj, F. Zasada, Z. Sojka, Catal. Today 191 (2012) 129.

J. Kruk, K. Stołecki, K. Michalska, M. Konkol, P. Kowalik, Catal. Today 191 (2012) 125.

G. Centi, G. Cerrato, S. D'Angelo, U. Finardi, E. Giamello, Catal. Today 27 (1996) 265.

Einfluss des NO₂/NO_x-Verhältnisses auf die N₂O-Bildung während SCR-Reaktion

- N₂O-Bildung findet im Fe-haltigen Katalysator nur bei NO₂-Überschuss statt.
- N₂O-Bildung hängt vom NO₂/NO_x-Verhältnis ab

Eigene Ergebnisse

Experimentelles

Zusammenfassung 1. PBA-Treffen Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Katalysatorpräparation

Träger

Alumina (γ -Al₂O₃): CRI (Leuna) und Alfa Aesar

Titanoxid (TiO₂): P-25 (Evonik), Hombikat UV100 und 8602 (Huntsman)

Mischoxide: SiO₂-TiO₂ (Huntsman), SiO₂-Al₂O₃ (CRI), TS-1 (Evonik)

Aktivkohle: PBS-AC (Blücher), konv.-AC (Gryfskand)

Nass-Imprägnierung

- mit wässrigen Lösungen von Fe-, Cu- bzw. Mn-Nitraten oder -Acetaten
- Massenanteil: 12 24 Ma.-%
- Trocknung bei 60 °C unter Vakuum oder 75 °C unter Luft
- Calzinierung: 5 h bei 350 500 °C unter Luft oder N₂

Verwendete NH₃-SCR-Apparatur

^{*} nur für Vergiftungsversuche

Eigene Ergebnisse

Experimentelles

Zusammenfassung 1. PBA-Treffen

Reaktionsbedingungen

Präparation

Trägermaterial

Aktive Komponente

Musterkatalysatoren

Oberflächenmodifikation

Ergebnisse (1. PBA, Juli 2015)

Ausblick (1. PBA, Juli 2015)

- Variation des Gehaltes an aktiver Komponente (Inhibierung der N₂O-Bildung)
- binäre oder ternäre Mischoxidsysteme mit anderen Metallen (Mg, Cu, Ni, Co, Fe; z.B. Mn + Cu)
- Einfluss des NO : NH₃ Verhältnisses
- Einfluss der Kontaktzeit (GHSV)
- Einfluss der Vergiftung (H₂O, SO₂, H₂O + SO₂) auf Aktivität und Erhöhung der "Feuchte-Resistenz" (Hydrophobisierung)

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles

Reaktionsbedingungen

Präparation
Trägermaterial
Aktive Komponente
Musterkatalysatoren
Oberflächenmodifikation

NO/NH₃-Verhältniss

- 0,3MnO_x/TiO₂
- unproduktiver NH₃-Verbrauch durch konkurrierende Oxidation
- maximaler Umsatz nur mit NH₃-Überschuss

450 - 600 ppm NH₃

Kontaktzeit (GHSV)

- 0,3MnO_x/TiO₂
- Bereich mit maximaler N₂O-Bildung: GHSV > 33.000 h⁻¹
- NH₃-Oxidation schneller als NO_x-Reduktion

 $GHSV = 20.000 - 45.000 h^{-1}$

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen

Experimentelles

Reaktionsbedingungen

Präparation

Trägermaterial

Aktive Komponente

Musterkatalysatoren

Oberflächenmodifikation

Metallvorläufer

- 0,3MnO_x/TiO₂
- bei Nitrat im LT-Bereich (< 200 °C) Hälfte der N₂O-Selektivität
- evtl. mindert höherer Anteil MnO₂ die N₂O-Bildung

H₂-TPR

	H ₂ -Verbrauch / mmol g ⁻¹	Mittlerer Oxidations- Zustand Mn
Nitrat	2,6	3,5
Nitrat + Citronensäure	1,7	3,0
Acetat	1,6	2,9

4 Vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h^{-1} n(Mn)/n(Ti) = 0,3

TiO₂: Hombikat UV100 (Huntsman)

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen

Experimentelles

Reaktionsbedingungen

Präparation

Trägermaterial

Aktive Komponente

Musterkatalysatoren

Oberflächenmodifikation

MnO_x/Träger-Beladung mit "Fremdoxid"

- Trägermaterial beladen mit ca. 3 Ma.-% Fremdoxid (Si, Ti bzw. Al)
- Fremdoxid unterdrückt N₂O-Bildung

Untersuchung des Einflusses von SiO₂ (NH₃-TPD)

 Verringerung Aktiviät für die NH₃-Oxidation (Oxidationsaktivität)

Sättigung: 90 °C, NH₃-Pulse; T bis 550 °C TiO₂: Hombikat UV100 (Huntsman)

Untersuchung des Einflusses von SiO₂ (DRIFTS-NH₃-TPD)

 Steigerung der Stabilität von adsorbiertem NH₃

Untersuchung des Einflusses von SiO₂ (NO_x-TPD)

 Verringerung der Adsorptionskapazität und NO-Oxidation

Sättigung: 90 °C, 1200 ppm NO, 4 Vol.-% O₂ TiO₂: Hombikat UV100 (Huntsman)

Untersuchung des Einflusses von SiO₂ (Zusammenfassung)

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen

Experimentelles

Reaktionsbedingungen

Präparation

Trägermaterial

Aktive Komponente

Musterkatalysatoren

Oberflächenmodifikation

Variation des Mangangehalts

- yMnO_x/TiO₂
- TiO₂-Träger zeigt kaum katalytische Aktivität
- bei 0,1Mn überwiegen Mn-Ti-Wechselwirkungen (Submonolage möglich)

n(Mn)/n(Ti) = y	Massenanteil Mn / %
0	0
0,1	6,4
0,2	12,1
0,3	17,1
0,4	21,6

4 Vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(Mn)/n(Ti) = y TiO₂: Hombikat 8602 (Huntsman)

Unterschiedliche Übergangsmetalloxide

- 0,4MO_x/TiO₂
- Mn, Cu und Fe zeigen hohe Umsätze
- Mn weißt sehr hohe N₂O-Selektivität auf
- Co und Ni zeigen nur geringe Aktivität

4 Vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(M)/n(Ti) = 0,4 TiO₂: P-25 (Evonik)

Mischoxide

- 0,2MO_x/TiO₂ mit M = Mn_{1-y}Cu_y
- Mn_{0,5}Cu_{0,5}O_x/TiO₂ zeigt NO-Umsatz ähnlich zu Cu und N₂O-Selektivität ähnlich zu Mn

4 Vol.-% O_2 , 500 ppm NO, 575 ppm NH $_3$, GHSV = 30.000 h^{-1} n(M)/n(Ti) = 0,2

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen

Experimentelles

Reaktionsbedingungen

Präparation

Trägermaterial

Aktive Komponente

Musterkatalysatoren

Oberflächenmodifikation

Herstellung und Charakterisierung

- für IUTA-Testversuche
- Mn- und Cu-haltig
- Imprägnierung mit Nitrat
- Calcinierung: 5 h bei 350 °C
- Mischoxid-Träger:
 - TP Hombikat 4%SiO₂-96%TiO₂ (Huntsman)
 - 20%SiO₂-80%Al₂O₃ (CRI)
- Herstellung: CRI Catalyst Leuna GmbH

RFA

MnO_x/SiO_2-TiO_2	CuO _x /SiO ₂ -Al ₂ O ₃
19 % MnO ₂	26 % CuO
77 % TiO ₂	59 % Al ₂ O ₃
3 % SiO ₂	15 % SiO ₂

XRD:

MnO _x /SiO ₂ -TiO ₂	CuO _x /SiO ₂ -Al ₂ O ₃
Pyrolusit MnO ₂	Tenorit CuO
Anatas TiO ₂	

- BET-Oberfläche
 - MnO_x/SiO_2-TiO_2 142 m² g⁻¹
 - CuO_x/SiO₂-Al₂O₃ 274 m² g⁻¹

NH₃-SCR-Aktivität

- breites Temperaturfenster hoher Aktivität bei Mnhaltigem Katalysator
- geringe N₂O-Selektivität für Cu-haltigen Katalysator

Einfluss von H₂O und SO₂ auf SCR-Aktivität

4,5 % H₂O 50 ppm SO₂

- H₂O bewirkt starke, irreversible Desaktivierung des Cu-haltigen Katalysators
- NO-Umsatz des Mn-haltigen Katalysators wird durch H₂O kaum beeinflusst
- irreversible Desaktivierung durch SO₂
- Minderung der N₂O-Bildung

⁴ Vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen

Experimentelles

Reaktionsbedingungen

Präparation

Trägermaterial

Aktive Komponente

Musterkatalysatoren

Oberflächenmodifikation

Idee der Oberflächenmodifizierung

Silylierung: Oberflächenmodifizierung mit Organosilica-Gruppen

- Hydrophobierung soll höhere H₂O-Resistenz bewirken
- Blockieren der aktiven Zentren?
- thermische Stabilität?

Erste Ergebnisse

Modifizierung mit HMDS

- Methylsilylierung bewirkt starke Minderung der Aktivität unter 300 °C
- sterischer Effekt der Trimethylsilyl-Gruppe

Einfluss von Wasser auf SCR-Aktivität von Cu/AC und Cu/Al₂O₃

CO_x-Entwicklung aus 17CuO_x/AC-Katalysator während NH₃-SCR in Ab- und Anwesenheit von Wasser

Einfluss von H₂O und SO₂ auf den NO-Umsatz an Mn-Cu-Mischoxid-haltigen Katalysatoren

• $0.2MO_x/TiO_2$ mit $M = Mn_{1-y}Cu_y$

TiO₂: Hombikat 8602 (Huntsman)

- Vergiftungsresistenz nimmt mit Mn-Gehalt zu
- Synergie bei simultaner Vergiftung

Zusammenfassung und Ausblick

Zusammenfassung

- N₂O-Selektivität für MnO_x/TiO₂-basierten Katalysatoren konnte durch Modifikationen (SiO₂, Nitrat, ...) von 160 % auf 19 % (200 °C) reduziert werden.
- SiO₂-Beladung von MnO_x/TiO₂ führt zu verminderter N₂O-Bildung und stabilisiert SCR-aktive NH₃-Spezies auf Katalysatoroberfläche.
- Mn-, Cu- bzw. Fe-Mischoxide sind vielversprechende Kandidaten als aktive Komponenten in Katalysatoren für die LT-SCR.
- Präparationsweg für Musterkatalysatoren für IUTA wurde entwickelt.
 Von CRI hergestellte Katalysatoren zeigen gute SCR-Aktivität.

Ausblick

- Untersuchung der Mischoxide von Mn-Fe und Fe-Cu (evtl. ternäres System Mn-Cu-Fe)
- weitere Untersuchung des Einflusses von Silylgruppen
 - Erhalt der Aktivität vs. H₂O-Resistenz
- Einfluss von CeO_x-Beladung des Trägermaterials
- weitere Untersuchungen zu Aktivkohle-basierten Katalysatoren

UNIVERSITÄT LEIPZIG

Danke für Ihre Aufmerksamkeit

2. Sitzung des projektbegleitenden Ausschusses

Marcus Kasprick Wladimir Suprun Roger Gläser

Institut für Technische Chemie Universität Leipzig

Wiederverwendbarkeit eines MnO_x/TiO₂-Katalysators

- keine Abnahme des NO-Umsatzes
- Verringerung der N₂O-Bildung

SEM (I)

0,3MnO_x/Hombikat UV100 (calciniert 500°C)

SEM (II)

Hombikat UV100 (calciniert 500°C)

Untersuchung des Einflusses der Si-Dotierung (NH₃-TPD)

 Verringerung der Aktivität zur NH₃-Oxidation

Sättigung: 90 °C, NH₃-Pulse TiO₂: Hombikat UV100 (Huntsman)

Untersuchung des Einflusses der Si-Dotierung (DRIFTS-NH₃-TPD)

Sättigung: 90 °C, 1000 ppm NH₃

TiO₂: Hombikat UV100 (Huntsman), B - Brønsted Adsorptionszentrum, L - Lewis Adsorptionszentrum K.I. Hadiiivanov, Catalysis Reviews 42 (2000) 71–144.

Träger: Einfluss Si-Dotierung (DRIFTS NO_x-Adsorption)

Sättigung: 90 °C, 1000 ppm NO, 4 % O_2 Ti O_2 : Hombikat UV100 (Huntsman)

Influence of Water on NO_x-Conversion by SCR on CuOx Contrainig Catalysts (relative conversion drops at 250°C)

Comparison of NH₃-SCR-Activity in Dry and Wet Flow at 250 °C

- Addition of water supressed catalytic activity
 (drop of NH₃ and NO conversion)
- NO_x conversion decreases more for CuO_x loaded AO catalysts than for AC supported catalysts
- CuO_x supported over Silica-Alumina shows lower Conversion drop than CuO_x supported over γ - Al_2O_3

Figure 1. (a) NH3-SCR activity and (b) N2 selectivity of V1Ti, Mn2Ti, and V1MnxTi with various Mn loadings for the NOx reduction with NH3. Reaction conditions: [NO] = [NH3] = 500 ppm, [O2] = 5%, GHSV = 128 000 h-1.

Figure 3. Response of NOx conversion over V1Ti and V1Mn2Ti catalysts at 350 °C to intermittent feed of H2O and SO2. Reaction conditions: [NO] = [NH3] = 500 ppm, [O2] = 5%, [H2O] = 5%, [SO2] = 50 ppm, GHSV = 128 000 h-1.

MnO significantly enhanced the activity of V_2O_5/TiO_2 catalyst for NH₃-SCR below 400 °C.

Influence of WO_x on the Activity of a MnO/CeO_x/TiO₂ Catalyst for LT NH_3 -SCR

The Mn/TiO₂ anatase catalyst is very active for LT –NH₃-SCR of NO in comparison Rutile supported Mn catalysts.

Fig. 13. Time-on-stream behavior of 16.7 wt.% Mn/TiO₂ anatase (Hombikat) catalyst in the absent and presence of the 11 vol.% water vapor: NH₃ = 400 ppm; NO = 400 ppm; O₂ = 2.0 vol.%; GHSV = 50,000 h⁻¹; catalyst wt. = 100 mg; reaction temperature = 175 °C.

Appl. Catal. B: Environm. 76 (2007) 123–134
P. R. Ettireddy , N. Ettireddy , S. Mamedov , P. Boolchand , P. G. Smirniotis

Effect on NO conversion and N2 selectivity in the SCR reaction of Mn/TiO2 and Mn–Ni/TiO2 catalysts with respect to the Ni/Mn atomic ratio;

T = 200 C; GHSV = 50,000 h1; feed: NO = 400 ppm, NH3 = 400 ppm, O2 = 2 vol.%, N2 selectivities at 6 h of TOS

Fig. 4. Influence of inlet water concentrations (10 vol.%) on NO conversion in the SCR reaction over Mn–Ni(0.4)/TiO₂ catalyst at 200 °C; feed; NO, 400 ppm NH₃/NO, 1.0, O₂, 2 vol.%, He carrier gas, catalyst, 0.1 g, GHSV, 50,000 h⁻¹.

Fig. 3. SCR of NO with NH3 at 200 C over Mn/TiO2 and Mn–Ni/TiO2 catalysts;

(j): GHSV = 50,000 h1;

feed: NO = 400 ppm, NH3 = 400 ppm,

O2 = 2 vol.%, He carrier gas,

total flow = 140 mL min1, XNO% = conversion of NO; catalyst = 0.1 g.

B. Thirupathi, P. G. Smirniotis J. Catal. 288 (2012) 74–83

Mechanismus der NH₃-SCR-Reaction an Cu-haltigen Katalysatoren in Gegenwart von O₂

Herstellung von Distickstoffmonoxid

I. Erhitzen einer Mischung aus Natriumnitrat und Ammoniumnitrat.

$$2 \text{ NaNO}_3 + (NH_4)_2SO_4 \rightarrow Na_2SO_4 + 2 N_2O + 4 H_2O$$

II. Nebenprodukt beim Ostwald Process am Pt/RhKatalysator.

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$
 $(\Delta H = -905.2 \text{ kJ})$

III. Oxidation of Ammoniak an einem Mn-BiO-Katalysator.

$$2 NH_3 + 2 O_2 \rightarrow N_2O + 3 H_2O$$

CO₂-Entwicklung während SCR an Musterkatalysatoren

Aktivität von Fe₂O₃-Katalysatoren zur Hochtemperatur-N₂O-Zersetzung (HT-DeN₂O)

Einfluss der Temperatur auf den N₂O-Umsatz der Fe₂O₃-basierten Katalysatoren mit unterschiedlichen Promotoren.

Aktivierungsenergie für DeN₂O an Fe₂O₃-basierten Katalysatoren:

Catalyst	E_a (kJ mol ⁻¹)
FeCu	85.0 ± 13.7
FeAl	98.7 ± 8.6
FeLa	108.9 ± 7.9
FeCe	125.7 ± 17.9
FeZr	149.1 ± 4.2
FeCr	165.8 ± 30.3

J. Kruk, K. Stołecki, K. Michalska, M. Konkol, P. Kowalik, Catal. Today 191 (2012) 125.