Gefördert durch: Bundesministerium für Wirtschaft und Technologie

UNIVERSITÄT LEIPZIG

Entwicklung eines energieeffizienten Verfahrens zur katalytischen Niedertemperatur-Entfernung von NO_x aus industriellen Abgasen

2. Sitzung des Projektbegleitenden Ausschusses des IGF-Vorhabens Nr. 18515N

28. Juni 2016, Duisburg

Marcus Kasprick Waldimir Suprun Roger Gläser

Institut für Technische Chemie, Universität Leipzig

Inhalt

- Vorstellung des Projektes
- Stand der Technik
- Zusammenfassung 1. PBA-Treffen
- Experimentelles
- Ausgewählte Ergebnisse (Highlights)
- Zusammenfassung
- Ausblick

Vorstellung des Projektes

Projektbegleitender Ausschuss

- ADSOR-TECH GmbH, Premnitz
- Blücher GmbH, Erkrath
- CarboTech AC GmbH, Essen
- CRI Catalyst Leuna GmbH, Leuna
- Eproplan GmbH, Stuttgart
- ete.a GmbH, *Lich*
- GEA Deutschland, Düsseldorf
- Huntsman Pigments and Additives
- LÜHR FILTER GmbH Co. KG, Stadthagen
- M&C TechGroup Germany GmbH, *Ratingen*
- Nederman Filtration GmbH, *Friesenheim*
- Palas GmbH, *Karlsruhe*
- Rheinkalk GmbH, Wülfrath
- Tiede- & Niemann Ingenieurgesellschaft mbH, Hamburg

Drei Aufgabenstellungen des Projekts

- Entwicklung maßgeschneiderter Katalysatoren und Labor-1. untersuchungen zur Umsetzung von NO_x in Anwesenheit von **NH**₃ und hoher Gasfeuchte bei niedrigen Temperaturen (< 200 ° C) UNIVERSITÄT LEIPZIG
- 2. Aufbau und Betrieb einer Laboranlage zum messtechnischen Nachweis der Leistungsfähigkeit
- Optimierung des verfahrenstechnischen Konzepts auf Basis der 3. Versuchsergebnisse

Parametervergleich der konventionellen NH₃-SCR und zu entwickelnder Niedertemperatur (NT-)NH₃-SCR

Materialentwicklung	Stand konventionell	Projektgegenstand
Temperatur / °C	280 - 380	< 200
Trägermaterial	TiO ₂	Aktivkohle, TiO ₂ , Al ₂ O ₃ , Mischoxide
Aktive Komponente	$V_2O_5 + MoO_3 + WO_3$	MnO _x , CuO _x , FeO _x , Mischoxide
Oberflächenbehandlung	Nein	Hydrophobierung durch (Me) _n -Si bzw. NO ₂ -Modifizierung für Aktivkohle
Ausführung	Monolith	Partikel: Staub / Pellets Applikation als Monolith möglich

Projektplanung - Arbeits- und Zeitplan

Testung der vorausgewählten Materialien hinsichtlich:

- mechanische Dauerstabiltät
- Abreinigungsverhalten und Handling
- Desaktivierung aufgrund von Feuchte als f(T)
- Desaktivierung aufgrund von Katalysatorgiften als f(T)
- Verbesserung der NO_x-Umsetzung durch nachgeschaltete Behandlung

Stand der Technik

Katalysezyklus für die SCR-Reaktion an V₂O₅/TiO₂

- Untersuchungen zeigen direkten Zusammenhang zwischen NO_x-Umsatz und Brønsted-Säurezentren (BAS)-Konzentration
- komplizierter Zusammenhang zwischen Art der sauren Zentren (LAS bzw. BAS)

N.-Y. Topsøe, Science, 265 (1994) 1217.

N.-Y. Topsøe, J.A. Dumesic, H. Topsøe, J. Catal. 151 (1995) 241.

Mechanismus der "standard"- und "fast"-SCR-Reaktion

 $2 \text{ NH}_3 + 3 \text{ NO} \rightarrow 2,5 \text{ N}_2 + 3 \text{ H}_2\text{O}$

E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, J. Cat. 245 (2007) 1–10.

Multiple Mechanismen zur N₂O-Bildung während der DeNO_x-Reaktion

a)	Partielle Oxidation von Ammoniak:	
	$NH_3^{(ads)}$ + [O] $\rightarrow N_2O$ + H_2O	
	f = {NH ₃ -Gehalt, ÜMO-Gehalt, Temp. und	
	Redox-Aktivität von ÜMO ("oxidation power")}	

ÜMO = Übergangsmetalloxid, z.B. Mn, Cu, Fe, V ...

b)	Rekombination von NO ^(ads) :	
	$2 \text{ NO} \rightarrow \text{N}_2\text{O} + [\text{O}]$	
	f = {ÜMO-Dichte auf OF, Temp., Redox-Aktivität,	
	NO-AdsKapazität, Präsenz von HC und Wasser}	

c)

Thermischer/katalytischer Zerfall von $NH_4NO_3^{(ads)}$: $NH_4NO_3^{(ads)} \rightarrow N_2O + H_2O + N_2$ f = {NO₂-Gehalt, Säure/Base-Eigenschaften, Temp., Redox-Aktivität}

ÜMO = Übergangsmetalloxid

M. Colombo, I. Nova, E. Tronconi, Catal. Today 151 (2010) 223.

Verringerung der N₂O-Emission

Eine Reduktion der Emission von N_2O , was ein ca. **300-mal größeres** Treibhauspotential aufweist als CO_2 , gehört zur Zeit zu einem der wichtigsten Ziele im Umweltschutz und LT-SCR-Technologie.

2014 betrug der Anteil an N_2O von menschenverursachten Treibhausgasen ca. 6 %.

N₂O wird als Ergebnis des mikrobiologischen Abbaus von Dünger im Boden freigesetzt.

A. Adamski, W. Zaj, F. Zasada, Z. Sojka, Catal. Today 191 (2012) 129.
J. Kruk, K. Stołecki, K. Michalska, M. Konkol, P. Kowalik, Catal. Today 191 (2012) 125.
G. Centi, G. Cerrato, S. D'Angelo, U. Finardi, E. Giamello, Catal. Today 27 (1996) 265.

Einfluss des NO₂/NO_x-Verhältnisses auf die N₂O-Bildung während SCR-Reaktion

- N₂O-Bildung findet im Fe-haltigen Katalysator nur bei NO₂-Überschuss statt.
- N₂O-Bildung hängt vom NO₂/NO_x-Verhältnis ab

Eigene Ergebnisse

Experimentelles

Zusammenfassung 1. PBA-Treffen Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Katalysatorpräparation

Träger

Alumina (γ**-Al**₂**O**₃): CRI (Leuna) und Alfa Aesar

Titanoxid (TiO₂): P-25 (Evonik), Hombikat UV100 und 8602 (Huntsman)

Mischoxide: SiO₂-TiO₂ (Huntsman), SiO₂-Al₂O₃ (CRI), TS-1 (Evonik)

Aktivkohle: PBS-AC (Blücher), konv.-AC (Gryfskand)

Nass-Imprägnierung

- mit wässrigen Lösungen von Fe-, Cu- bzw. Mn-Nitraten oder -Acetaten
- Massenanteil: 12 24 Ma.-%
- Trocknung bei 60 °C unter Vakuum oder 75 °C unter Luft
- Calzinierung: 5 h bei 350 500 °C unter Luft oder N₂

Verwendete NH₃-SCR-Apparatur

* nur für Vergiftungsversuche

Eigene Ergebnisse

Experimentelles

Zusammenfassung 1. PBA-Treffen

Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Ergebnisse (1. PBA, Juli 2015)

 Synthochische (Blücher) und konventionelle (Holz) Aktivkohlereignen sich Bis Katalysetorträgei für Cu^AOxide. Die Verbrehnung der AC-Träger2setzt effst oberhalt verbrahr (Blücher)

Ausblick (1. PBA, Juli 2015)

- Variation des Gehaltes an aktiver Komponente (Inhibierung der N₂O-Bildung)
- binäre oder ternäre Mischoxidsysteme mit anderen Metallen (Mg, Cu, Ni, Co, Fe; z.B. Mn + Cu)
- Einfluss des NO : NH₃ Verhältnisses
- Einfluss der Kontaktzeit (GHSV)
- Einfluss der Vergiftung (H₂O, SO₂, H₂O + SO₂) auf Aktivität und Erhöhung der "Feuchte-Resistenz" (Hydrophobisierung)

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

NO/NH₃-Verhältniss

450 - 600 ppm NH₃

200 °C, 4 Vol.-% O₂, 500 ppm NO, GHSV = 30.000 h⁻¹ n(Mn)/n(Ti) = 0,3 TiO₂: Hombikat UV100 (Huntsman)

21

• 0,3MnO_x/TiO₂

- unproduktiver NH₃-Verbrauch durch konkurrierende Oxidation
- maximaler Umsatz nur mit NH₃-Überschuss

Kontaktzeit (GHSV)

• 0,3MnO_x/TiO₂

- Bereich mit maximaler N₂O-Bildung: GHSV > 33.000 h⁻¹
- NH₃-Oxidation schneller als NO_x-Reduktion

GHSV = 20.000 - 45.000 h⁻¹

200 °C, 4 Vol.-% O₂, 500 ppm NO, 575 ppm NH₃ n(Mn)/n(Ti) = 0,3 TiO₂: Hombikat UV100 (Huntsman)

22

UNIVERSITÄT LEIPZIG

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Metallvorläufer

- 0,3MnO_x/TiO₂
- bei Nitrat im LT-Bereich (< 200 °C) Hälfte der N₂O-Selektivität
- evtl. mindert höherer Anteil
 MnO₂ die N₂O-Bildung

4 Vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(Mn)/n(Ti) = 0,3

24 TiO₂: Hombikat UV100 (Huntsman)

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren

Oberflächenmodifikation

MnO_x/Träger-Beladung mit "Fremdoxid"

- Trägermaterial beladen mit ca. 3 Ma.-% Fremdoxid (Si, Ti bzw. Al)
- Fremdoxid unterdrückt N₂O-Bildung

26

Untersuchung des Einflusses von SiO₂ (NH₃-TPD)

 Verringerung Aktiviät f
ür die NH₃-Oxidation (Oxidationsaktivit
ät)

Sättigung: 90 °C, NH₃-Pulse; T bis 550 °C TiO₂: Hombikat UV100 (Huntsman)

Untersuchung des Einflusses von SiO₂ (DRIFTS-NH₃-TPD)

 Steigerung der Stabilität von adsorbiertem NH₃

Sättigung: 90 °C, 1000 ppm NH₃

TiO₂: Hombikat UV100 (Huntsman), B - Brønsted Adsorptionszentrum, L - Lewis Adsorptionszentrum

K.I. Hadjiivanov, Catalysis Reviews 42 (2000) 71–144.

UNIVERSITÄT LEIPZIG

Untersuchung des Einflusses von SiO₂ (NO_x-TPD)

 Verringerung der Adsorptionskapazität und NO-Oxidation

Untersuchung des Einflusses von SiO₂ (Zusammenfassung)

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Variation des Mangangehalts

- TiO₂-Träger zeigt kaum katalytische Aktivität
- bei 0,1Mn überwiegen Mn-Ti-Wechselwirkungen (Submonolage möglich)

n(Mn)/n(Ti) = y	Massenanteil Mn / %
0	0
0,1	6,4
0,2	12,1
0,3	17,1
0,4	21,6

4 Vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(Mn)/n(Ti) = y TiO + Herebitet 2002 (Husterson)

32 TiO₂: Hombikat 8602 (Huntsman)

[•] yMnO_x/TiO₂

Unterschiedliche Übergangsmetalloxide

- 0,4MO_x/TiO₂
- Mn, Cu und Fe zeigen hohe Umsätze
- Mn weißt sehr hohe N₂O-Selektivität auf
- Co und Ni zeigen nur geringe Aktivität

4 Vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(M)/n(Ti) = 0,4 TiO₂: P-25 (Evonik)

33

UNIVERSITÄT LEIPZIG

Mischoxide

- 0,2MO_x/TiO₂ mit M = Mn_{1-y}Cu_y
- Mn_{0,5}Cu_{0,5}O_x/TiO₂ zeigt NO-Umsatz ähnlich zu Cu und N₂O-Selektivität ähnlich zu Mn

4 Vol.-% O₂, 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹ n(M)/n(Ti) = 0,2 TiO₂: Hombikat 8602 (Huntsman)

34

UNIVERSITÄT LEIPZIG

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Herstellung und Charakterisierung

- für IUTA-Testversuche
- Mn- und Cu-haltig
- Imprägnierung mit Nitrat
- Calcinierung: 5 h bei 350 °C
- Mischoxid-Träger:
 - TP Hombikat 4%SiO₂-96%TiO₂ (Huntsman)
 - 20%SiO₂-80%Al₂O₃ (CRI)
- Herstellung: CRI Catalyst Leuna GmbH

RFA		
MnO _x /SiO ₂ -TiO ₂	CuO _x /SiO ₂ -Al ₂ O ₃	
19 % MnO ₂	26 % CuO	
77 % TiO ₂	59 % Al ₂ O ₃	
3 % SiO ₂	15 % SiO ₂	

XRD:

MnO _x /SiO ₂ -TiO ₂	CuO _x /SiO ₂ -Al ₂ O ₃
Pyrolusit MnO ₂	Tenorit CuO
Anatas TiO ₂	

- BET-Oberfläche
 - MnO_x/SiO₂-TiO₂
 142 m² g⁻¹
 - CuO_x/SiO₂-Al₂O₃ 274 m² g⁻¹

NH₃-SCR-Aktivität

- breites Temperaturfenster hoher Aktivität bei Mnhaltigem Katalysator
- geringe N₂O-Selektivität für Cu-haltigen Katalysator

4 vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Einfluss von H₂O und SO₂ auf SCR-Aktivität

- H₂O bewirkt starke, irreversible Desaktivierung des Cu-haltigen Katalysators
- NO-Umsatz des Mn-haltigen Katalysators wird durch H₂O kaum beeinflusst
- irreversible Desaktivierung durch SO₂
- Minderung der N₂O-Bildung

4 Vol.-% O_2 , 500 ppm NO, 575 ppm NH₃, GHSV = 30.000 h⁻¹

Eigene Ergebnisse

Zusammenfassung 1. PBA-Treffen Experimentelles Reaktionsbedingungen Präparation Trägermaterial Aktive Komponente Musterkatalysatoren Oberflächenmodifikation

Idee der Oberflächenmodifizierung

Silylierung: Oberflächenmodifizierung mit Organosilica-Gruppen

UNIVERSITÄT LEIPZIG

Erste Ergebnisse

Modifizierung mit HMDS

Methylsilylierung bewirkt starke Minderung der Aktivität unter 300 °C

sterischer Effekt der Trimethylsilyl-Gruppe

Einfluss von Wasser auf SCR-Aktivität von Cu/AC und Cu/Al₂O₃

UNIVERSITÄT LEIPZIG

CO_x-Entwicklung aus 17CuO_x/AC-Katalysator während NH₃-SCR in Ab- und Anwesenheit von Wasser

Einfluss von H₂O und SO₂ auf den NO-Umsatz an Mn-Cu-Mischoxid-haltigen Katalysatoren

- 0,2MO_x/TiO₂ mit M = Mn_{1-y}Cu_y
- Vergiftungsresistenz nimmt mit Mn-Gehalt zu
- Synergie bei simultaner Vergiftung

44

Zusammenfassung und Ausblick

Zusammenfassung

- N₂O-Selektivität für MnO_x/TiO₂-basierten Katalysatoren konnte durch Modifikationen (SiO₂, Nitrat, …) von 160 % auf 19 % (200 °C) reduziert werden.
- SiO₂-Beladung von MnO_x/TiO₂ führt zu verminderter N₂O-Bildung und stabilisiert SCR-aktive NH₃-Spezies auf Katalysatoroberfläche.
- Mn-, Cu- bzw. Fe-Mischoxide sind vielversprechende Kandidaten als aktive Komponenten in Katalysatoren f
 ür die LT-SCR.
- Präparationsweg für Musterkatalysatoren für IUTA wurde entwickelt.
 Von CRI hergestellte Katalysatoren zeigen gute SCR-Aktivität.

- Untersuchung der Mischoxide von Mn-Fe und Fe-Cu (evtl. ternäres System Mn-Cu-Fe)
- weitere Untersuchung des Einflusses von Silylgruppen
 - Erhalt der Aktivität vs. H₂O-Resistenz
- Einfluss von CeO_x-Beladung des Trägermaterials
- weitere Untersuchungen zu Aktivkohle-basierten Katalysatoren

UNIVERSITÄT LEIPZIG

Danke für Ihre Aufmerksamkeit

2. Sitzung des projektbegleitenden Ausschusses

Marcus Kasprick Wladimir Suprun Roger Gläser

Institut für Technische Chemie Universität Leipzig

Wiederverwendbarkeit eines MnO_x/TiO₂-Katalysators

SEM (I)

0,3MnO_x/Hombikat UV100 (calciniert 500°C)

SEM (II)

Hombikat UV100 (calciniert 500°C)

Untersuchung des Einflusses der Si-Dotierung (NH₃-TPD)

m/z = 15 (NH) Temperatur / °C m/z = 30 (NO) m/z = 44 (N₂O) Zeit / min

MnO_v/SiO₂-TiO₂

Untersuchung des Einflusses der Si-Dotierung (DRIFTS-NH₃-TPD)

Sättigung: 90 °C, 1000 ppm NH₃

TiO₂: Hombikat UV100 (Huntsman), B - Brønsted Adsorptionszentrum, L - Lewis Adsorptionszentrum

K.I. Hadjiivanov, Catalysis Reviews 42 (2000) 71-144.

UNIVERSITÄT LEIPZIG

Träger: Einfluss Si-Dotierung (DRIFTS NO_x-Adsorption)

54

Influence of Water on NO_x-Conversion by SCR on CuOx Contrainig Catalysts (relative conversion drops at 250°C)

- NO_x conversion decreases more for CuO_x loaded AO than for AC supported catalysts
- CuO supported over Silica-Alumina shows lower conversion drop than CuO supported over Alumina (AO)
- Mix of **Cu+Mn+Mg** oxides show higher resistance towards poisoning than CuO loaded AO (Synergie ?),
- PBS-AC supported catalyst posesses higher resistance towards poisoning than convent. charcoal AC supported catalyst

Comparison of NH₃-SCR-Activity in Dry and Wet Flow at 250 °C

- Addition of water supressed catalytic activity (drop of NH₃ and NO conversion)
- NO_x conversion decreases more for CuO_x loaded AO catalysts than for AC supported catalysts
- CuO_x supported over Silica-Alumina shows lower Conversion drop than CuO_x supported over γ-Al₂O₃

Figure 1. (a) NH3-SCR activity and (b) N2 selectivity of V1Ti, Mn2Ti, and V1MnxTi with various Mn loadings for the NOx reduction with NH3. Reaction conditions: [NO] = [NH3] = 500ppm, [O2] = 5%, GHSV = 128 000 h–1.

MnO significantly enhanced the activity of V_2O_5/TiO_2 catalyst for NH₃-SCR below 400 °C.

Z. Liu, Y.Li, T. Zhu, H. Su, J. ZhuInd. Eng. Chem. Res. 53 (2014) 12964-12970

Influence of WO_x on the Activity of a MnO/CeO_x/TiO₂ Catalyst for LT NH₃-SCR

D. W. Kwon, K.B. Nam, S. C. Hong, App. Catal. A: Gen. 497 (2015) 160-166

The Mn/TiO₂ anatase catalyst is very active for LT –NH₃-SCR of NO in comparison Rutile supported Mn catalysts.

Fig. 13. Time-on-stream behavior of 16.7 wt.% Mn/TiO₂ anatase (Hombikat) catalyst in the absent and presence of the 11 vol.% water vapor: NH₃ = 400 ppm; NO = 400 ppm; O₂ = 2.0 vol.%; GHSV = 50,000 h⁻¹; catalyst wt. = 100 mg; reaction temperature = 175 °C.

Appl. Catal. B: Environm. 76 (2007) 123–134 P. R. Ettireddy , N. Ettireddy , S. Mamedov , P. Boolchand , P. G. Smirniotis

Effect on NO conversion and N2 selectivity in the SCR reaction of Mn/TiO2 and Mn–Ni/TiO2 catalysts with respect to the Ni/Mn atomic ratio;

T = 200 C; GHSV = 50,000 h1; feed: NO = 400 ppm, NH3 = 400 ppm, O2 = 2 vol.%, N2 selectivities at 6 h of TOS

Fig. 4. Influence of inlet water concentrations (10 vol.3) on NO conversion in the SCR reaction over Mn–Ni(0.4)/TiO₂ catalyst at 200 °C; feed; NO. 400 ppm NH₂/NO. 1.0, O₂. 2 vol.3, He carrier gas, catalyst. 0.1 g, GHSV. 50,000 h^{-1} .

Fig. 3. SCR of NO with NH3 at 200 C over Mn/TiO2 and Mn–Ni/TiO2 catalysts;
(j): GHSV = 50,000 h1;
feed: NO = 400 ppm, NH3 = 400 ppm,
O2 = 2 vol.%, He carrier gas,
total flow = 140 mL min1, XNO% = conversion of NO; catalyst = 0.1 g.

B. Thirupathi, P. G. Smirniotis J. Catal. 288 (2012) 74-83

Mechanismus der NH₃-SCR-Reaction an Cu-haltigen Katalysatoren in Gegenwart von O₂

G. Centi, S. Perathoner, Appl. Catal. A 132 (1995) 179.

Herstellung von Distickstoffmonoxid

• I. Erhitzen einer Mischung aus Natriumnitrat und Ammoniumnitrat.

 $2 \text{ NaNO}_3 \text{ + } (\text{NH}_4)_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 \text{ + } 2 \text{ N}_2 \text{O} \text{ + } 4 \text{ H}_2 \text{O}$

• II. Nebenprodukt beim Ostwald Process am Pt/RhKatalysator.

4 NH₃ + **5** O₂ → **4** NO + **6** H₂O (Δ H = -905.2 kJ)

III. Oxidation of Ammoniak an einem Mn-BiO-Katalysator.

 $2 \hspace{0.1cm} \text{NH}_3 \hspace{0.1cm} + \hspace{0.1cm} 2 \hspace{0.1cm} \text{O}_2 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \text{N}_2 \text{O} \hspace{0.1cm} + \hspace{0.1cm} 3 \hspace{0.1cm} \text{H}_2 \text{O}$

"Nitrogen Family" www.chemistry.tutorvista.com (25.05.16)

T. Suwa, A. Matsushima A, Y. Suziki, Y. Namina , Kohyo Kagaku Zasshi, 64 (1961) 1879

CO₂-Entwicklung während SCR an Musterkatalysatoren

Aktivität von Fe₂O₃-Katalysatoren zur Hochtemperatur-N₂O-Zersetzung (HT-DeN₂O)

 $N_2O \rightarrow N_2 + 0.5O_2$

Einfluss der Temperatur auf den N_2O -Umsatz der Fe_2O_3 -basierten Katalysatoren mit unterschiedlichen Promotoren.

Aktivierungsenergie für DeN₂O an Fe₂O₃basierten Katalysatoren:

Catalyst	E_a (kJ mol ⁻¹)
FeCu	85.0 ± 13.7
FeAl	98.7 ± 8.6
FeLa	108.9 ± 7.9
FeCe	125.7 ± 17.9
FeZr	149.1 ± 4.2
FeCr	165.8 ± 30.3

J. Kruk, K. Stołecki, K. Michalska, M. Konkol, P. Kowalik, Catal. Today 191 (2012) 125.