

2. Treffen Projektbegleitender Ausschuss am 09. Februar 2011

Evaluierung der kathodenseitigen Schädigungsmechanismen durch partikuläre und gasförmige Luftschadstoffe mit Hilfe von elektrochemischen Messmethoden zur Standzeiterhöhung von PEM-Brennstoffzellen (Kathodenluft II)

ZBT GmbH Carl-Benz-Straße 201 47057 Duisburg Germany

Telefon: +49-203-7598 0 Telefax: +49-203-7598 2222 www.zbt-duisburg.de info@zbt-duisburg.de

Zentrum für BrennstoffzellenTechnik GmbH – www.zbt-duisburg.de

- 11.00 Uhr: Begrüßung und Vorstellung der Institute sowie der Mitglieder des PA
- 11.15 Uhr Vorstellung der Ergebnisse "Schadgase" des ersten Projektjahres und aktueller Stand des Feldtests
- 12.30 Uhr Mittagsimbiss
- 13.15 Uhr Vorstellung der Ergebnisse "Partikel" des ersten Projektjahres und weiteren Vorgehensweise im Projektverlauf
- 14.00 Uhr Diskussion und Vorschläge
- anschließend Führung IUTA
- ca.15.00 Uhr Ende der Veranstaltung

- Einleitung Elektrochemische Impedanzspektroskopie (EIS)
 - EIS bei Brennstoffzellen
 - Nyquistdiagramm
 - Modelparameter (elektrisches Ersatzschaltbild)
 - Modellbildung
- Ergebnisse NO₂
- Ergebnisse NO und Vergleich mit NO₂
- Ergebnisse SO₂
- Aktueller Stand Feldtest
- Zusammenfassung und Fragestellungen
- Weitere Vorgehensweise und Diskussion

Kurze Einführung in die elektrochemische Impedanzspektroskopie

- Elektrochemische Vorgänge zeigen charakteristische Zeitabhängigkeiten. Der Unterschied zu sonstigen zeitabhängigen Reaktionsvorgängen liegt in der Tatsache, dass den elektrochemischen Reaktionen direkt elektrische Größen zugeordnet sind.
- Eine (elektrochemische) Gesamtreaktion lässt sich in Teilreaktionen zerlegen, die entweder hintereinander oder parallel ablaufen können (Beispiele: Ladungs- und Massentransport im Ionenleiter, Diffusion, Adsorption, Dissoziation, Reaktion, Ladungsdurchtritt).
- Diese Teilreaktionen können für sich unterschiedliche (Reaktions)Geschwindigkeitskonstanten besitzen.
- Zu den Messungen wird ein passendes Modell erstellt und mit den Messdaten gefittet.

- Durch das Nyquistdiagramm können erste Erkenntnisse über bestimmte Betriebsparameter ermittelt werden
- Änderung Betriebsparameter führt zu verändertem Nyquistplot
 Viele Autoren haben EIS an Brennstoffzellen durchgeführt und analysiert
 - → Entwicklung von Modellparametern und deren Bedeutung

Modellbausteine und deren Bedeutung

Modellbausteine und deren Bedeutung

Modellparameter	Bedeutung	Schaltzeichen/	Einflussbereich
		MODEII	
C _{DL}	Doppelschichtkapazität Adsorption		Mittelfrequenter Bereich
R _{CT}	Ladungsdurchtritt		Mittelfrequenter Bereich
R _M	Membranwiderstand		Hochfrequenter Bereich
R _{dif} Nernst- diffusion	Diffusionsvorgänge insbesondere in der GDL	-N $R1 + R2 + R3$ $C1 = C1 = C1$	Niederfrequenter Bereich
dif			
R _p	Protonischer Widerstand		Hochfrequenter Bereich
CPE	Oberflächenmorphologie		Mittelfrequenter Bereich
Poröse Elektrode	Beschreibung der elektro- aktiven Oberflächen		Mittelfrequenter Bereich

Typische Änderung des Nyquistplots durch Veränderung einzelner Modellparameter Literaturquelle: Dissertation Markus Backes, TU München

Doppelschichtkapazität

Problem: Überlagerungen insbesondere im mittelfrequenten Bereich

- Bei Kenntnis über Messdaten der EIS, deren Darstellung im Nyquist Plot sowie Wissen über Brennstoffzellenmodelle bzw. deren Aufbau und Verschaltungen kann ein passendes Modell entwickelt werden
- Für die Messdaten am Einzelstack wurde ein klassisches Brennstoffzellenmodell angewendet, das um Poröse Elektrode und Anodenteil erweitert wurde

- 1. Induktivität (Kabel)
- 2. Effektiver Ladungsdurchtrittswiderstand (R_{ct})
- 3. Nernst-Diffusion
 - Warburg Parameter [m Ω (s⁻¹)^{-1/2}],
 - k_N [1/s]
- 4. Doppelschichtkapazität Kathode C_{DL} [F]
- 5. Poröse Elektrode
 - Integr. Porenelektrolytwiderstand [mΩ]
 - Bulk Widerstand [mΩ]
- 6. Membranwiderstand $R_M [m\Omega]$
- 7. R_{CT} Anode [$\mu\Omega$]
- 8. CPE Anode [mF]

Versuchsdurchführungen mit Schadgasen

Versuchsparameter bei allen Versuchen mit Einzelstack 50 cm² aktive Fläche

- Zelltemperatur: 70 ℃
- Lambda Anode: 2,2
- Taupunkt Anode: 67 °C
- Lambda Kathode: 1,7
- Kathode nicht befeuchtet
- Stromdichten 200 mA/cm², 400 mA/cm² und 600 mA/cm²
- Aufzeichnung der Zellspannung
- Aufnahme Impedanzspektren von 0,1 Hz bis 30 kHz
- Darstellung im Nyquist Diagramm
- jeweils 2 Messreihen pro Stromdichte
- NO₂-Konzentration: 10 ppm
- NO-Konzentration: 10 ppm
- SO₂-Konzentration: 2 ppm, 5 ppm, 8 ppm

Spannungsverlauf bei Belastung mit 10 ppm NO₂ und anschließender Regeneration (200 mA/cm², 400 mA/cm², 600 mA/cm²)

10 ppm NO₂ in air

- cell voltage — cell voltage after cool down — cell temperature

Regeneration durch Abkühlung bei 400 mA/cm²

Spannungsverlauf bei Belastung mit 10 ppm NO₂ in synthetischer Luft

Nyquist-Diagramm Impedanzmessungen Einzelzelle bei 200 mA/cm² mit NO2 Zugabe (10 ppm)

← without NO2 --- with NO2 after 60 min --- with NO2 after 120 min --- with NO2 after 200 min

0,68

← without NO2 → with NO2 after 200 min ← NO2 after 400 min

Nyquist-Diagramm Impedanzmessungen Einzelzelle bei 200 mA/cm² mit NO2 Zugabe (10 ppm)

← without NO2 → with NO2 after 200 min – NO2 after 400 min – after 120 min regeneration

Nyquist-Diagramm Impedanzmessungen Einzelzelle bei 400 mA/cm² mit NO2 Zugabe (10 ppm)

→ without NO2 → with NO2 after 60 minutes → with NO2 after 180 min → with NO2 after 300 min

Nyquist-Diagramm Impedanzmessungen Einzelzelle bei 600 mA/cm² und 10 ppm NO₂

← without NO2 – with NO2 after 30 min – with NO2 after 60 min → with NO2 after 45 min

Fragestellungen:

- Was sagen uns die Kurven genau?
- Können wir einzelne Parameter qualitativ und quantitativ ermitteln?
- Sind Überlagerungen aufzuschlüsseln?
- \rightarrow Anwendung des erstellten Modells und fitten mit Software von Zahner

Verlauf Modellparameter bei 400 mA/cm² und 10 ppm NO₂

Anodenparameter vernachlässigt, da praktisch kein Einfluss zu erkennen war

- Anstieg $R_{ct} \rightarrow$ Sauerstoffkonzentration in der Katalysatorschicht sinkt infolge von Transporthemmungen
- Anstieg Warburg \rightarrow Sauerstoffdiffusionshemmung in der GDL. Gas-Gas Diffusion von Sauerstoff in Stickstoff bzw. NO_x scheint eine große Rolle zu spielen
- Leichter Anstieg k_N → Abnahme der Diffusionslänge oder Zunahme des Diffusionskoeffizienten. Widerspruch zum Anstieg von Warburg Parameter!!!

Nahezu konstante C_{DL} \rightarrow Keine signifikante Bedeckung der Katalysatorschicht

Bulkwiderstand und Elektrolytwiderstand beim Modellbaustein

"Poröse Elektrode" sind nahezu konstant

Fragestellung: Warum sinken R_{ct} und Warburg trotz weiterer Schadgasbelastung nach erreichen eines Maximums wieder ab?

<u>Fragestellung</u>: Warum sinken R_{ct} und Warburg trotz weiterer Schadgasbelastung nach erreichen eines Maximums wieder ab?

Abhängigkeit von Überspannungen ? Schädigungsmechanismus von NO₂?

Erste Ergebnisse:

- NO₂ schädigt nicht die Membran
- NO₂ belegt keine aktiven Flächen
- Durch NO₂ steigen Diffusionswiderstände
- Der Ladungsdurchtritt am Katalysator wird erschwert
- Schädigung ist reversibel. Je schneller der Spannungsabfall desto schneller regeneriert die Zelle anschließend wieder

Vergleich Spannungsverlust bei Belastung mit 10 ppm NO bei 200 mA/cm², 400 mA/cm und 600 mA/cm²

Voltage_600 mA/cm² ---- Voltage_400 mA/cm² ---- Voltage_200 mA/cm²

Nyquist-Diagramm Vergleich Impedanzmessungen Einzelzelle bei 400 mA/cm² und 10 ppm NO

🛶 ohne NO 🛶 mit NO nach 30 min → mit NO nach 20 min

Nyquist-Diagramm Vergleich Impedanzmessungen Einzelzelle bei 400 mA/cm² und 10 ppm NO

🔶 ohne NO 🛶 mit NO nach 30 min 并 mit NO nach 20 min 🖛 mit NO nach 120 min 🖛 mit NO nach 200 min

Verlauf Modellparameter bei 400 mA/cm² und 10 ppm NO

Anodenparameter vernachlässigt, da praktisch kein Einfluss zu erkennen war

- Anstieg $R_{ct} \rightarrow$ Sauerstoffkonzentration in der Katalysatorschicht sinkt infolge von Transporthemmungen
- Anstieg Warburg \rightarrow Sauerstoffdiffusionshemmung in der GDL. Gas-Gas Diffusion von Sauerstoff in Stickstoff bzw NO_x scheint eine große Rolle zu spielen
- Leichter Anstieg k_N → Abnahme der Diffusionslänge oder Zunahme des Diffusionskoeffizienten. Widerspruch zum Anstieg von Warburg Parameter!!!

Nahezu konstante C_{DL} \rightarrow Nur minimale Bedeckung der Katalysatorschicht

Bulkwiderstand und elektrolytwiderstand beim Modellbaustein "Poröse Elektrode" sind nahezu konstant

<u>Fragestellung</u>: Warum sinken R_{ct} und Warburg trotz weiterer Schadgasbelastung nach erreichen eines Maximums wieder ab?

Fragestellung: Warum sinken R_{ct} und Warburg trotz weiterer Schadgasbelastung nach erreichen eines Maximums wieder ab?

Abhängigkeit von Überspannungen ?

Schädigungsmechanismus von NO?

Erste Ergebnisse:

- NO schädigt nicht die Membran
- NO belegt kaum aktiven Flächen
- Durch NO steigen Diffusionswiderstände
- Der Ladungsdurchtritt am Katalysator wird erschwert
- Schädigung bzw. Spannungsabfall tritt im Vergleich zu NO₂ deutlich schneller auf
- Schädigung ist reversibel. Je schneller der Spannungsabfall desto schneller regeneriert die Zelle anschließend wieder

Vergleich Spannungsverlust bei Belastung mit 10 ppm NO₂ vs. 10 ppm NO (400 mA/cm²)

Vergleich Spannungsverlust bei Belastung mit 10 ppm NO₂ oder 10 ppm NO (200 mA/cm²)

Nyquist-Diagramm Vergleich Impedanzmessungen Einzelzelle bei 200 mA/cm² NO vs. NO₂

Vergleich Modellparameter NO vs. NO₂ bei 200 mA/cm²

ZB Schädigungsmechanismus NO_x

 $2NO + O_2 \rightarrow 2NO_2$ Sauerstoff wird gebunden $\rightarrow O_2$ -Gehalt in Zuluft sinkt → Spannung sinkt schneller

als bei NO₂ Zugabe 1.1 NO₂ NO₂ Electrode potential (V vs SHE) 0.9 **PEMFC** operating range Activity ranges for adsorbed NO oxidation 0.7 0.5 NH₃OH⁺ NH4⁺ NO Stability range for adsorbed NO 0.3 N_2 N_2O Activity ranges for 0.1 adsorbed NO reduction -0.1 -3 5 -4 -2 -1 2 3 4 6 0 N oxidation state

Quelle: N.Zamel (2010)

Spannungsverlauf Schadgasmessungen mit SO₂

Nyquist-Diagramm Vergleich Impedanzmessungen Einzelzelle bei 400 mA/cm² und 2 ppm SO₂

→ ohne SO2 → 2 ppm SO2 nach 60 min → 2 ppm SO2 nach 120 min → 2 ppm SO2 nach 180 min

Nyquist-Diagramm Vergleich Impedanzmessungen Einzelzelle bei 400 mA/cm² und Beaufschlagung mit SO $_2$ kathodenseitig

- ohne SO2 - SO2 nach 240 min - SO2 nach 280 min - SO2 nach 320 min

Modellparameter bei Belastung mit SO₂

Anodenparameter vernachlässigt, da praktisch kein Einfluss zu erkennen war

- Anstieg $R_{ct} \rightarrow$ Sauerstoffkonzentration in der Katalysatorschicht sinkt infolge von Transporthemmungen
- Anstieg Warburg → Sauerstoffdiffusionshemmung in der GDL. Gas-Gas Diffusion von Sauerstoff in Stickstoff

Leichter Anstieg folgend mit Abnahme k_N → Zunahme der Diffusionslänge bzw. Abnahme des Diffusionskoeffizienten

 C_{DL} steigt leicht an → Bedeckung der Katalysatorschicht → C_{DL} sinkt Bedeckung der Katalysatorschicht → Erhöhung der Stromdichte durch niedrigere aktive Fläche → C_{DL} steigt Überlagerungseffekt → CV notwendig!!!

Elektrolytwiderstand beim Modellbaustein "Poröse Elektrode" steigt leicht an

<u>Fragestellung</u>: Warum sinken R_{ct} und Warburg trotz weiterer Schadgasbelastung nach erreichen eines Maximums wieder ab?

Abhängigkeit von Überspannungen ? Schädigungsmechanismus von SO₂ ?

Erste Ergebnisse:

- SO₂ schädigt bei kurzzeitiger Beaufschlagung mit erhöhten Konzentrationen nicht die Membran
- SO₂ belegt aktive Flächen am Kat ??? Beweis durch CV
 → wäre Begründung für irreversible Schädigung
- Durch SO₂ steigen Diffusionswiderstände
- Der Ladungsdurchtritt am Katalysator wird erschwert
- Schädigung ist irreversibel. Leichte Spannungserhöhung durch OCV

$\mathbf{F}_{\mathbf{F}}$ Zusammenfassung und Fragestellungen NO_x

Ergebnisse:

NO und NO₂

- führen zu Spannungsabfall mit Annäherung eines Grenzwertes
- Bei NO sinkt Spannung sofort stark, bei NO₂ zunächst nur leichter Abfall der Spannung → Zelle "verträgt" NO₂-Peaks deutlich besser als NO-Peaks → Erfahrungen im Dauertest gesammelt
- je höher die Beladung desto schneller der Spannungsabfall
- je höher die Stromdichte desto stärker der Spannungsabfall
- Schädigung ist reversibel bei Beaufschlagung mit schadstofffreier Luft
- Je schneller die Spannung fällt, desto schneller ist anschließend auch die Regenerationszeit

$\mathbf{F}_{\mathbf{F}}$ Zusammenfassung und Fragestellungen NO_x

Ergebnisse:

NO und NO₂

- führen zu Spannungsabfall mit Annäherung eines Grenzwertes
- Bei NO sinkt Spannung sofort stark, bei NO₂ zunächst nur leichter Abfall der Spannung → Zelle "verträgt" NO₂-Peaks deutlich besser als NO-Peaks → Erfahrungen im Dauertest gesammelt

Möglichkeit zur kompletten Unwandlung von NO in NO₂ vor dem Stack ??? im ppm bzw. ppb Bereich ???

Ergebnisse Impedanzmessungen

NO und NO₂

- schädigen nicht die Membran
- führen zu starker Erhöhung der Diffusionswiderstände und des Ladungsdurchtrittswiderstandes (bei NO deutlich schneller als bei NO₂)
- Keine signifikante Bedeckung der aktiven Kat.-Flächen (Beweis muss mit CV durchgeführt werden)

Zusammenfassung und Fragestellungen SO₂

Ergebnisse SO₂

- sofortiger Spannungsabfall
- Je höher die Konzentration desto stärker der Spannungsabfall
- Bei hohen Überspannungen nähert sich die Spannung einem Grenzwert
- Schädigung nur teilweise reversibel z.B. durch OCV (Leerlaufspannung)

Ergebnisse Impedanzmessungen SO₂

- schädigt nicht die Membran (auch bei Langzeitbeaufschlagung?)
- führt zu starker Erhöhung der Diffusionswiderstände und des Ladungsdurchtrittswiderstandes
- Bedeckung der aktiven Kat.-Flächen wird vermutet (Beweis muss mit CV durchgeführt werden)

- Der Elektrolyseur wurde durch IUTA beschafft und am ZBT in Betrieb genommen
- Die für den Anlagenbetrieb erforderliche Infrastruktur wurde vorbereitet sowie die immissionsseitigen Messgrößen definiert
- Es wurden am ZBT zwei Brennstoffzellensysteme mit jeweils einem 5-Zell-Stack aufgebaut. Diese Systeme wurden mit dem Elektrolyseur gekoppelt und befinden sich zurzeit in der Testphase im Labor

Fehlersuche: System und/oder Stack?

Problematik System

- → Leaching von Systemkomponenten
- → Projekt mit ZBT u. DKI in Planung

Nickellegierung löste sich während Betrieb ab

- → Cu²⁺ aus Messing erreichte den Stack
- \rightarrow Membran zersetzt sich

Verbinder wurden gegen SMC-Verbinder ausgetauscht

- SO₂-Versuch mit CV vor und nach Schadgasbeaufschlagung
- Tests mit N₂O → Literatur: keine Schädigung der Zelle → Umwandlung von NO_x in N₂O vor Zelle theoretisch möglich?
- Dauertest mit geringeren Konzentrationen
- Experimente mit EIS-Modell \rightarrow z.B. Festhalten einzelner Modellparameter
- Einsatz von Filtermaterialien
- Versuchsreihen mit Ammoniak
- Feldtest Styrum und Auswertung

Weitere Vorschläge und Diskussionen erwünscht!!!